Protocolo Normalizado de Trabajo para Muestreo y diagnóstico de betanodavirus, VHSV e IPNV en peces salvajes y cultivados

ANTECEDENTES

Tras la reunión mantenida en Madrid el 8 de mayo de 2007 entre los laboratorios responsables de diagnóstico y las Consejerías implicadas en el Proyecto Jacumar "Caracterización y Estandarización de Condiciones de Sanidad Animal en Acuicultura: Creación de Mapas Epidemiológicos y Elaboración de Estrategias para el Diseño de una Red de Vigilancia Epidemiológica", se llegó al acuerdo de unificar criterios al respecto de la metodología a seguir en el proceso completo de diagnóstico, incluyendo el tipo, toma y transporte de las muestras, el procedimiento de extracción y la detección/identificación por RT-PCR.

OBJETIVO

Unificar el procedimiento de diagnóstico para el establecimiento de un Mapa Epidemiológico en el que los resultados inter-comunidades puedan ser comparables

PROTOCOLO

- 1. Toma y transporte de muestras
 - a. Las muestras se obtendrán, cuando sea posible, a partir de peces vivos, y en todo caso se hará a partir de peces muertos o moribundos [*Nota*: evitar los que estén en fase de "rigor mortis"].
 - b. Los órganos a muestrear en cada pez serán:
 - i. Para el diagnóstico de beta-nodavirus: cerebro
 - ii. Para el diagnóstico de VHSV e IPNV: riñón anterior y bazo
 - c. Toma de la muestra
 - i. Los órganos se extraerán asépticamente
 - ii. En el caso de alevines o peces de un tamaño superior a 5 cm, se extraerán los órganos indicados arriba. En el caso de alevines de un tamaño entre 3 y 5 cm, se separan la cabeza y las vísceras (desechando en la medida de posible los intestinos) del resto de la musculatura, y se procesan por separado. En el caso de peces de un tamaño inferior, los individuos se procesan enteros.
 - iii. La mitad (al menos 0,3-0,5 gr) de cada órgano se introducirá en viales estériles de 1,5 5 ml
 - 1. Cuando el transporte de la muestra vaya a durar más de 4 h, como en el caso del estudio correspondiente a Murcia, la porción de órgano citada en el apartado anterior se introducirá en tubos con 1,0 ml de RNAlater (Ambion) [*Nota*: De éste modo, el ácido nucleico de las muestras será estable durante 1 día a 37°C, o durante 1 semana a T^a ambiente].

iv. La otra mitad del órgano se mantendrá a 4°C el mínimo tiempo posible, procediendo cuanto antes a su almacenamiento a -80°C (sin ningún aditivo), durante no más de 2 años. [*Nota*: En caso de detectar una muestra positiva por PCR, se utilizaría su homóloga congelada para proceder a la aplicación de la técnica de aislamiento en cultivo celular, para aislar el virus].

d. Transporte de las muestras al laboratorio de análisis:

- i. El sistema de transporte debe asegurar, en cualquier caso, la estabilidad de la muestra, y será distinto en cada Comunidad Autónoma, debido a la distancia entre el punto de toma de muestra y el laboratorio de análisis.
- ii. Murcia: En este caso, las muestras en RNAlater se enviarán refrigeradas al CISA (Madrid), donde se procederá a la extracción de RNA, paso a cDNA y PCR para diagnóstico.
- iii. Andalucía, Canarias y Galicia: En estos casos, la distancia entre el los puntos de muestreo y el laboratorio de diagnóstico asegura el transporte de la muestra, bajo refrigeración, en menos de 4 h, por lo que no es necesario el uso de RNAlater.
 - 1. Los órganos podrán ser obtenidos *in situ*, en el propio punto de muestreo, en cuyo caso, las muestras se prepararán como se indica en los apartados 1.c III y IV, y se enviarán refrigeradas,
 - 2. Los órganos podrán ser extraídos en el laboratorio de diagnóstico, en cuyo caso, los peces muestreados en los puntos de muestreo deberán ser enviados refrigerados.

2. Extracción del RNA

- a. Reagrupación de muestras:
 - i. En el caso de los peces salvajes, cada pez se analizará individualmente [*Nota*: en el caso concreto de la Comunidad Canaria, esta apartado podrá ser modificado, en función del volumen de peces implicado, pasando a la realización de pooles, como se indica a continuación].
 - ii. En el caso de los peces cultivados, se llevará a cabo reagrupación, dentro de cada planta de cultivo y lote, en *pooles* de 5 individuos, siendo esta la unidad de análisis de diagnóstico [*Nota*: en este caso, la homogenización de los órganos se realizará de modo conjunto, para tener una única extracción de RNA por *pool*].
- b. Extracción de RNA.- La extracción de RNA a partir de los tejidos se realiza mediante el sistema RNeasy® Mini Kit (Qiagen), de la siguiente forma: Hasta un máximo de 200 mg de tejido se homogenizan en 360 μl de tampón RLT [Nota: si es necesario, se utilizarán sistemas mecánicos, tipo OMNI o similares]. El resto del proceso se realiza siguiendo las indicaciones del fabricante. Finalmente el RNA se eluye en 75 μl de agua libre de nucleasas, y se conserva, en el caso de que no se vaya a utilizar de inmediato, a 80 °C.

3. Síntesis de cDNA.-

Para obtener el cDNA, las muestras de RNA viral (2,5-25 ng/μl) se incuban tal como indica el protocolo de la SuperScriptTM III RT (Invitrogen) en presencia de *random primers* durante 5 min a 95°C, y a continuación se transfieren inmediatamente a 4°C. Seguidamente se añaden el resto de los componentes de la reacción: 4 μl de "5X First Strand buffer", 1 μl de DTT 0,1 M, 1 μl de dNTP mix (10 mM cada unos de ellos), 50 U de SuperScriptTM III RT, y agua libre de nucleasas hasta un volumen final de 20 μl. Esta solución se incuba a 25°C durante 10 min seguidos de otra incubación de 50°C durante 50 min (síntesis del cDNA). Finalmente la mezcla de reacción se somete a 85°C durante 5 min para inactivar la reversotranscriptasa. Opcionalmente se puede incubar la mezcla durante 20 min a 37°C en presencia de RNasa H para degradar los restos de RNA presentes. El cDNA obtenido se conserva a -80 °C en el caso de que no vaya a ser utilizado de inmediato.

4. Reacción en Cadena de la Polimerasa (PCR)

Para la reacción de PCR utilizamos el sistema HotMaster® Mix (2,5X), de Eppendorf. De 3 a 5 μl del resultado de la reacción de transcripción inversa se utilizan para la PCR. Brevemente: 10 μl de HotMaster® Mix (2,5X) se mezclan con los cebadores forward y reverse específicos para cada virus [*Nota*: ver apartado 5] a una concentración final de 0,25 μM, de 3 a 5 μl de cDNA y agua libre de nucleasas hasta un volumen final de 25 μl. Esta mezcla de reacción se somete a los siguientes ciclos [*Nota*: se empleará el mismo protocolo en todos los casos]:

- 1. 94 °C durante 3 min
- 2. 94 °C durante 30 seg
- 3. 58 °C durante 30 seg
- 4. 68 °C durante 30 seg 35 ciclos desde paso 2 a 4
- 5. 68 °C durante 10 min
- 6. 4 °C hasta recoger

El resultado de la reacción de PCR se carga en un gel de agarosa 1,5 % y las bandas específicas se visualizan en un transiluminador de UV.

- 5. Parejas de cebadores: Para el diagnóstico de cada uno de los 3 virus, se emplearán dos parejas de primers, con el fin de asegurar la detección de todos los tipos de cepas de cada uno de ellos. Los cebadores se muestran en el Anexo 1 del presente protocolo.
- 6. Actuaciones ante resultados positivos para cualquiera de los virus,
 - a. El fragmento de PCR amplificado se secuenciará con el fin de corroborar el resultado positivo y tener indicios del tipo viral.
 - b. A partir de la réplica de la muestra correspondiente (bajo custodia, congelada, en las Consejerías), se procederá al aislamiento del virus, siguiendo para ello las normativas europeas y OIE.

ANEXO I

Tabla 1.- Cebadores utilizados en el diagnóstico de IPNV, VHSV y betanodavirus. Posición en cepas de referencia y producto

			U	, ,	<i>J</i> 1
Virus	Segm	Pareja	Cebador	Secuencia (5'-3')	Posición-Cepa
IPNV	A	Heppel ²	F	AGA-GAT-CAC-TGA-CTT-CAC-AAG-TGA-C	(1403-1427
			R	CTC-AGT-AGA-AAG-GAC-ACC-ACG-TGT	(1746-1761)
	В	UIP-PV	IPNBA4U	TGG-GGA-AGT-CGT-TCT-CCA-AC	220-239
			IPNBA4R	CCC-CCT-TGA-CAA-CCC-TCA-GG	524-509
VHSV	(no aplica)	OIE	forward	GGG-GAC-CCC-AGA-CTG-T	
			reverse	TCT-CTG-TCA-CCT-TGA-TCC	
		UIP-PV	VHSCM3A	CAG-GCG-TTG-TCC-GTG-CTT-CT	278-297
			VHSCM3B	ACC-CTG-CGA-GTT-TCC-TGA-TGG	615-635
Betanodavirus	RNA 2	OIE ¹	NODAF2	CGT-GTC-AGT-CAT-GTG-TCG-CT	604-623
			NODAR3	CGA-GTC-AAC-ACG-GGT-GAA-GA	1011-1030
	RNA 1	UIP-PV	NpRNA1_21	CAGTTCGTATGCAGTGCGGATGTT	1113-1090)
			NpRNA1 2u	TTTGGGTGTTCCGATATTGTTGTA	546-569

- 1.- Nishizawa, T., Mori,K-i.,Furuhashi, M., Nakai,T., Furusawa,I., & Muroga, K, 1995. Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. Journal of General Virology, 76: 1563-1569.
- 2.- Heppell, J., Berthiaume, L., Tarrab, E., Lecomte, J. and Arella, M., 1992. Evidence of genomic variations between infectious pancreatic necrosis virus strains determined by restriction fragments profiles. Journal of General Virology, 73: 2863-2870.