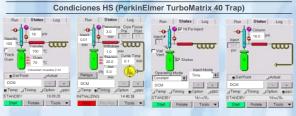


Determinación de diclorometano en orina mediante la técnica de espacio de cabeza

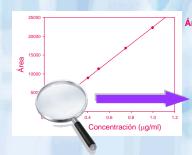

P. Marín (1); C. Prado (2); J. Alcaraz (2); J.F. Periago (1,2)

- (1) Departamento de Ciencias Sociosanitarias. Universidad de Murcia
- (2) Instituto de Seguridad y Salud Laboral de la Región de Murcia

Introdución y objetivos

- 📄 El diclorometano (DCM) se utiliza principalmente como un disolvente, en eliminación de pinturas y barnices, en desengrasantes, y en aerosoles
- El DCM afecta al sistema nervioso central y produce irritación de las mucosas, y está clasificado como posible carcinógeno para humanos (Grupo 2B) [1]. Además tiene establecidas restricciones a la fabricación, comercialización o el uso
- El análisis de disolventes sin metabolizar en orina es muy útil para el control biológico de este tipo de compuestos en ambientes laborales [2]; el desarrollo de métodos analíticos que permitan la determinación de DCM sin metabolizar en muestras de orina resulta muy interesante ya que se considera un indicador de la exposición ocupacional con un valor límite biológico (VLB) establecido [3].
- El objetivo de este trabajo ha sido el desarrollo de un método para la determinación de DCM en orina mediante un muestreador automático del espacio de cabeza (HS) acoplado a un cromatógrafo de gases (GC), equipado con un detector de espectroscopía de masas (MS)

Experimental


Ficitale Tools ▼.	Fru Flui Tools -	Rotate Tools ▼	Aotale Tools ▼
Etapas HS			
2 4 2			
	May.	Paran v.	
Trans	rater Line Transfer Li	ne Transfer	Line
M o	A o	M e.	
F N		[K] .	
1770	@ A	() 4	
Equilibrio	Presurización	Injección	

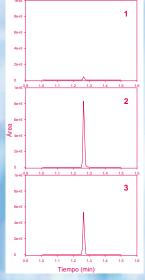
Condiciones GC-MS (PerkinElmer Clarus 600)				
Programa horno	35 °C durante 2 min, luego a 50 °C/min hasta 90 °C			
Inyector Split Splitless	200 °C, flujo Split : 20 ml/min			
D-Swafer	15 psig He			
Columna	HP-5MS, 30 m x 0.25 mm, 250 μm			
Temperatura fuente	180 °C			
Temperatura linea de transferencia	200 °C			
Scan	m/z 40 - 300 Da (0.35s / 0.05is)			
SIR	(0.05d, 0.005ic) m/z 84 (1.30 – 2.00 min)			

Resultados y discusión

Curva de calibrado, linealidad en el intervalo de aplicación y límite de detección (LDD)

Coeficiente de	LDD	Intervalo de aplicación
Correlación	(μg/ml)	(μg/ml)
0.9999	0.017	0.05 - 1

Precisión del método


Precisión mismo día (% DER), n = 6

Concentración (µg/ml)	DER (%)
0.03	6.6
0.3	1.2
0.5	2.2

Concentracion (μg/ml)	DER (%)
0.03	7.5
0.3	3.2
0.5	4.3
DED. Desidential anti-designation	

Precisión entre días (% DER), n = 6

Xref: Valor verdadero o aceptado \overline{X} : Valor medio de los resultados obtenidos para cada concentración

Cromatogramas obtenidos de la determinación de DCM en orina con una concentración de (1) 0.1 VLB (0.03 μ g/ml), (2) VLB (0.3 μ g/ml) y (3) 2 VLB (0.6 μ g/ml).

- Existe una relación lineal entre la cantidad de analito extraída y su concentración en la orina
- La desviación estándar relativa para cada nivel de concentración es < 10%
- El sesgo relativo para cada concentración y condición ensayada es < 10%
- ➡ Los límites de detección son lo suficientemente bajos como para cuantificar DCM en orina a niveles de exposición ocupacionales

El método desarrollado puede utilizarse para el control biológico rutinario, como complemento al control ambiental, para la evaluación de la exposición ocupacional a DCM

- [1] International Agency for Research on Cancer (IARC). Monogr. Eval. Carcinog. Risks Hum.; vol 71, Lyon, p.251.
- [2] M. Imbriani, S. Ghittori. Int. Arch. Occup. Environ. Health 78 (2005) 1.
- [3] Limites de exposición profesional para Agentes Químicos en España. 2011. Instituto Nacional de Seguridad e Higiene en el Trabajo. INSHT