ANEXOS

PROYECTO BASICO Y DE EJECUCION DE OBRAS DE AMPLIACIÓN Y REFORMAS EN EL I.E.S. SANJE **ALCANTARILLA (MURCIA)**

Región de Murcia

Consejería de Educación y Universidades

PROMUEVE: CONSEJERÍA DE EDUCACIÓN Y UNIVERSIDADES ARQUITECTAS: ANA GONZALO VIVANCOS Y MARTA SERRANO MARTINEZ

Representantes de SERRANO & GONZALO ARQUITECTAS S.L.P. CIF: B73557191. C/González Adalid 11, 1º pta. 2. 30001 Murcia Tfno.-fax: 968214146 Móvil: 619869982-659081538 sg@sgarquitectas.es

23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

INDICE DE LOS ANEXOS

ANEXO 1: JUSTIFICACION DEL CUMPLIMIENTO DEL CTE

> DB-SE: SEGURIDAD ESTRUCTURAL 1.1

1.2 DB-SI: SEGURIDAD EN CASO DE INCENDIO

1.3 DB-SUA: SEGURIDAD DE UTILIZACION Y ACCESIBILIDAD

DB-HS: SALUBRIDAD 1.4

1.5 DB-HR: PROTECCION FRENTE AL RUIDO

DB-HE: AHORRO DE ENERGIA 1.6

ANEXO 2: CALIFICACION ENERGETICA

ANEXO 3: INSTALACION ELECTRICA DE B.T.

ANEXO 4: CALCULOS JUSTIFICATIVOS DE LA ESTRUCTURA

ANEXO 5: PLAZO DE EJECUCIÓN PREVISTO Y CRONOGRAMA

> FÓRMULA POLINÓMICA DE REVISIÓN DE PRECIOS PROPUESTA DE CLASIFICACIÓN DEL CONTRATISTA

DECLARACIÓN DE QUE LA OBRA PROYECTADA CONSTITUYE UNA OBRA COMPLETA, SUSCEPTIBLE DE SER

ENTREGADA AL USO ESPECÍFICO DE ACUERDO CON EL ART. 125 DEL RGLCAP

ESTUDIO GEOTÉCNICO ANEXO 6:

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Pécha 869 982 - 659 081 538

ANEXO 1: JUSTIFICACION DEL CUMPLIMIENTO DEL CTE

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

ANEXO 1: JUSTIFICACIÓN DEL CUMPLIMIENTO DEL CTE

1.1 **DB-SE: SEGURIDAD ESTRUCTURAL**

1.1.1 JUSTIFICACIÓN DEL CUMPLIMIENTO DEL DB SE (SEGURIDAD ESTRUCTURAL)

La estructura se ha comprobado siguiendo los DB's siguientes:

DB-SE Bases de cálculo

DB-SE-AE Acciones en la edificación DB-SI Seguridad en caso de incendio

Y se han tenido en cuenta, además, las especificaciones de la normativa siguiente:

NCSF Norma de construcción sismorresistente: parte general y edificación

FHF Instrucción de hormigón estructural

FFHF Instrucción para el proyecto y la ejecución de forjados unidireccionales de hormigón estructural realizados

con elementos prefabricados

1.1.2 CUMPLIMIENTO DEL DB-SE. BASES DE CÁLCULO.

La estructura se ha analizado y dimensionado frente a los estados límite, que son aquellas situaciones para las que, de ser superadas, puede considerarse que el edificio no cumple alguno de los requisitos estructurales para los que ha sido concebido

SE 1. RESISTENCIA Y ESTABILIDAD.

La estructura se ha calculado frente a los estados límite últimos, que son los que, de ser superados, constituyen un riesgo para las personas, ya sea porque producen una puesta fuera de servicio del edificio o el colapso total o parcial del mismo. En general se han considerado los siguientes:

- a) pérdida del equilibrio del edificio, o de una parte estructuralmente independiente, considerado como un cuerpo rígido;
- b) fallo por deformación excesiva, transformación de la estructura o de parte de ella en un mecanismo, rotura de sus elementos estructurales (incluidos los apoyos y la cimentación) o de sus uniones, o inestabilidad de elementos estructurales incluyendo los originados por efectos dependientes del tiempo (corrosión, fatiga).

Las verificaciones de los estados límite últimos que aseguran la capacidad portante de la estructura, establecidas en el DB-SE 4.2, son las siguientes:

Se ha comprobado que hay suficiente resistencia de la estructura portante, de todos los elementos estructurales, secciones, puntos y uniones entre elementos, porque para todas las situaciones de dimensionado pertinentes, se cumple la siguiente condición:

 $E_d \le R_d$ siendo

Ed valor de cálculo del efecto de las acciones

R_d valor de cálculo de la resistencia correspondiente

Se ha comprobado que hay suficiente estabilidad del conjunto del edificio y de todas las partes independientes del mismo, porque para todas las situaciones de dimensionado pertinentes, se cumple la siguiente condición:

Ed dst ≤ Ed stb

Ed. dst valor de cálculo del efecto de las acciones desestabilizadoras

Edstb valor de cálculo del efecto de las acciones estabilizadoras

SE 2. APTITUD AL SERVICIO.

La estructura se ha calculado frente a los estados límite de servicio, que son los que, de ser superados, afectan al confort y al bienestar de los usuarios o de terceras personas, al correcto funcionamiento del edificio o a la apariencia

Los estados límite de servicio pueden ser reversibles e irreversibles. La reversibilidad se límite de servicio pueden ser reversibles e irreversibles. excedan los límites especificados como admisibles, una vez desaparecida da acciones mento las Rates prodes de 175500/52957 general se han considerado los siguientes:

a) las deformaciones (flechas, asientos o desplomes) que afecten a usuarios, o al funcionamiento de equipos e instalaciones;

Colegio Oficial de Arquitectos de Murcia ^{MMPG} a apariencia de la obra, al confort de los Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

- b) las vibraciones que causen una falta de confort de las personas, o que afecten a la funcionalidad de la obra;
- c) los daños o el deterioro que pueden afectar desfavorablemente a la apariencia, a la durabilidad o a la funcionalidad de la obra.

Las verificaciones de los estados límite de servicio, que aseguran la aptitud al servicio de la estructura, han comprobado su comportamiento adecuado en relación con las deformaciones, las vibraciones y el deterioro, porque se cumple, para las situaciones de dimensionado pertinentes, que el efecto de las acciones no alcanza el valor límite admisible establecido para dicho efecto en el DB-SE 4.3.

1.1.3 CUMPLIMIENTO DEL DB-SE-AE. ACCIONES EN LA EDIFICACIÓN.

Las acciones sobre la estructura para verificar el cumplimiento de los requisitos de seguridad estructural, capacidad portante (resistencia y estabilidad) y aptitud al servicio, establecidos en el DB-SE se han determinado con los valores dados en el DB-SE-AE.

Murcia, octubre de 2015

Fdo. Ana Gonzalo Vivancos y Marta Serrano Martínez Arquitectas

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

1.2 **DB-SI: SEGURIDAD EN CASO DE INCENDIO**

1.2.1 SI 1 Propagación interior

1.2.1.1 Compartimentación en sectores de incendio

Las distintas zonas del edificio se agrupan en sectores de incendio, en las condiciones que se establecen en la tabla 1.1 (CTE DB SI 1 Propagación interior), que se compartimentan mediante elementos cuya resistencia al fuego satisface las condiciones establecidas en la tabla 1.2 (CTE DB SI 1 Propagación interior).

A efectos del cómputo de la superficie de un sector de incendio, se considera que los locales de riesgo especial, las escaleras y pasillos protegidos, los vestíbulos de independencia y las escaleras compartimentadas como sector de incendios, que estén contenidos en dicho sector no forman parte del mismo.

Toda zona cuyo uso previsto sea diferente y subsidiario del principal del edificio, o del establecimiento en el que esté integrada, constituirá un sector de incendio diferente cuando supere los límites que establece la tabla 1.1 (CTE DB SI 1 Propagación interior).

Las puertas de paso entre sectores de incendio cumplen una resistencia al fuego El2 t-C5, siendo 't' la mitad del tiempo de resistencia al fuego requerido a la pared en la que se encuentre, o bien la cuarta parte cuando el paso se realiza a través de un vestíbulo de independencia y dos puertas.

EDIEICIO I E S

EDIFICIO I.E.S.	DIFICIO I.E.S.							
	Sectores de incendio							
	Sup. co	onstruida		Resistenci	a al fuego del elei	mento comparti	mentador (2)	
Sector (m²)		Uso previsto (1)	Paredes y techos (3)		Puertas			
	Norma	Proyecto		Norma	Proyecto	Norma	Proyecto	
GIMNASIO	2500	817.94	Docente	EI 60	EI 180	El ₂ 30-C5	-	
ZONA AULAS	2500	625.48	Docente	EI 60	EI 180	El ₂ 30-C5	-	
CANTINA	2500	133.54	Docente	EI 90	EI 180	El ₂ 45-C5	-	

Notas

1.2.1.2 Escaleras protegidas

Las escaleras protegidas y especialmente protegidas tienen un trazado continuo desde su inicio hasta su desembarco en la planta de salida del edificio.

De acuerdo a su definición en el Anejo A Terminología (CTE DB SI), las escaleras protegidas y especialmente protegidas disponen de un sistema de protección frente al humo, acorde a una de las opciones posibles de las recogidas en dicho Aneio.

Las tapas de registro de patinillos o de conductos de instalaciones, accesibles desde estos espacios, cumplen una protección contra el fuego El 60.

1.2.1.3 Locales de riesgo especial

Los locales y zonas de riesgo especial se clasifican conforme a tres grados de riesgo (alto, medio y bajo) según los criterios establecidos en la tabla 2.1 (CTE DB SI 1 Propagación interior), cumpliendo las condiciones que se determinan en la tabla 2.2 de la misma sección.

EDIFICIO LE S

Zonas de riesgo especial									
			Resistencia al fuego del elemento compartimenta (2)(3)(4)			artimentador			
Local o zona	Superficie (m²)	Nivel de riesgo (1)	Paredes y techos		Puertas				
			Norma	Proyecto	Norma	Proyecto			
CUARTO CPI	16.78	Bajo	EI 90	EI 180	El ₂ 45-C5	-			
CUARTO CALDERAS	17.31	Bajo	EI 90	EI 180	El ₂ 45-C5	-			

Notas

(1) La necesidad de vestíbulo de independencia depende del nivel de riesgo del local o zon

(2) Los valores mínimos están establecidos en la tabla 2.2 (CTF DB SI 1 Propagación interior)

(3) Los techos tienen una característica 'REI', al tratarse de elementos portantes y compartimen será menor que el establecido para la estructura portante del conjunto del edificio (CTE DB SI la zona se encuentre bajo una cubierta no prevista para evacuación y cuyo fallo no supon compartimentación contra incendios, en cuyo caso puede ser R 30.

(4) Los valores mínimos de resistencia al fuego en locales de riesgo especial medio y alto son apindependencia necesario para su evacuación.

REGISTRO Y ACREDITACION Agaci 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

adores de Colegio. Oficial de Arquitectos Idee Munoia MMPG Resistencia al fuego de la estructura), excepto cuando a ri**Autores**a MABSTAISIERERANO MABSTINISTA as ni para la ANA LUISA DE GONZALO VIVANCOS

cables a las puertas de entrada y salida del vestíbulo de

El Colegio Acredita la firma digital de los autores Número Fecha Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61 9 869 982

⁽¹⁾ Según se consideran en el Anejo A Terminología (CTE DB SI). Para los usos no contemplados en este Documento Básico, se procede por asimilación en función de la densidad de ocupación, movilidad de los usuarios, etc.

⁽²⁾ Los valores mínimos están establecidos en la tabla 1.2 (CTE DB SI 1 Propagación interior).

⁽³⁾ Los techos tienen una característica 'REI', al tratarse de elementos portantes y compartimentadores de incendio.

1.2.1.4 Espacios ocultos. Paso de instalaciones a través de elementos de compartimentación de incendios

La compartimentación contra incendios de los espacios ocupables tiene continuidad en los espacios ocultos, tales como patinillos, cámaras, falsos techos, suelos elevados, etc., salvo cuando éstos se compartimentan respecto de los primeros al menos con la misma resistencia al fuego, pudiendo reducirse ésta a la mitad en los registros para mantenimiento.

Se limita a tres plantas y una altura de 10 m el desarrollo vertical de las cámaras no estancas en las que existan elementos cuya clase de reacción al fuego no sea B-s3-d2, B_L-s3-d2 o mejor.

La resistencia al fuego requerida en los elementos de compartimentación de incendio se mantiene en los puntos en los que dichos elementos son atravesados por elementos de las instalaciones, tales como cables, tuberías, conducciones, conductos de ventilación, etc., excluidas las penetraciones cuya sección de paso no exceda de 50 cm².

Para ello, se optará por una de las siguientes alternativas:

- a) Mediante elementos que, en caso de incendio, obturen automáticamente la sección de paso y garanticen en dicho punto una resistencia al fuego al menos igual a la del elemento atravesado; por ejemplo, una compuerta cortafuegos automática El t(i↔o) ('t' es el tiempo de resistencia al fuego requerido al elemento de compartimentación atravesado), o un dispositivo intumescente de obturación.
- b) Mediante elementos pasantes que aporten una resistencia al menos igual a la del elemento atravesado, por ejemplo, conductos de ventilación El t(i↔o) ('t' es el tiempo de resistencia al fuego requerido al elemento de compartimentación atravesado).

Reacción al fuego de elementos constructivos, decorativos y de mobiliario 1.2.1.5

Los elementos constructivos utilizados cumplen las condiciones de reacción al fuego que se establecen en la tabla 4.1 (CTE DB SI 1 Propagación interior).

Las condiciones de reacción al fuego de los componentes de las instalaciones eléctricas (cables, tubos, bandejas, regletas, armarios, etc.) se regulan en el Reglamento Electrotécnico de Baja Tensión (REBT-2002).

Reacción al fuego		
Situación del elemento	Revestimiento	(1)
Situation del demento	Techos y paredes (2)(3)	Suelos (2)
Escaleras y pasillos protegidos	B-s1, d0	C _{FL} -s1
Locales de riesgo especial	B-s1, d0	B _{FL} -s1
Espacios ocultos no estancos: patinillos, falsos techos (4), suelos elevados, etc.	B-s3, d0	B _{FL} -s2 ⁽⁵⁾

Not as:

- (1) Siempre que se supere el 5% de las superficies totales del conjunto de las paredes, del conjunto de los techos o del conjunto de los suelos del recinto considerado
- (2) Incluye las tuberías y conductos que transcurren por las zonas que se indican sin recubrimiento resistente al fuego. Cuando se trate de tuberías con aliamiento térmico lineal, la clase de reacción al fuego será la que se indica, pero incorporando el subindice "L".

 (3) Incluye a aquellos materiales que constituyan una capa, contenida en el interior del techo o pared, que no esté protegida por otra que sea El 30
- como mínimo.

 (4) Excepto en falsos techos existentes en el interior de las viviendas.
- © Se refiere a la parte inferior de la cavidad. Por ejemplo, en la cámara de los falsos techos se refiere al material situado en la cara superior de la membrana. En espacios con clara configuración vertical (por ejemplo, patinillos), así como cuando el falso techo esté constituido por una celosia, retícula o entramado abierto con una función acústica, decorativa, etc., esta condición no es aplicable.

1.2.2 SI 2 Propagación exterior

Medianerías y fachadas

En fachadas, se limita el riesgo de propagación exterior horizontal del incendio mediante el control de la separación mínima entre huecos de fachada pertenecientes a sectores de incendio distintos, entre zonas de riesgo especial alto y otras zonas, o hacia una escalera o pasillo protegido desde otras zonas, entendiendo que dichos huecos suponen áreas de fachada donde no se alcanza una resistencia al fuego mínima El 60.

En la separación con otros edificios colindantes, los puntos de la fachada del edificio considerado con una resistencia al fuego menor que El 60, cumplen el 50% de la distancia exigida entre zonas con resistencia menor que El 60, hasta la bisectriz del ángulo formado por las fachadas del edificio objeto y el colindante.

Además, los elementos verticales separadores de otros edificios cumplen una resistencia al fuego mínima El 120, garantizada mediante valores tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados reconocidos (Anejo F 'Resistencia al fuego mínima El 120, acres tabulados acres t

DE DOCUMENTOS PROFESIONALES

23/12/2015 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

659 081 538

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

EDIFICIO I E S

LDII IOIO I.L.J.									
	Propagación horizontal Propagación horizontal								
Disasta	Fachada (1)	C 1 ((2)	Separación horizontal mínima (m) (3)						
Plantas	raciidua ()	Separación (2)	Ángulo (4)	Norma	Proyecto				
PLANTA BAJA	FACHADA EXTERIOR 30cm.	Sí	180	≥ 0.50	1.15				
PLANTA PISO	FACHADA EXTERIOR 30cm.	No		No procede					
PLANTA PISO FACHADA EXTERIOR DE HORMIGON e=45cm. No No procede					•				
			•						

(I) Se muestran las fachadas del edificio que incluyen huecos donde no se alcanza una resistencia al fuego El 60.

- © Se consideran aqui las separaciones entre diferentes sectores de incendio, entre zonas de riesgo especial alto y otras zonas o hacia una escalera o pasillo protegido desde otras zonas, según el punto 1.2 (CTE DB SI 2).

 © Distancia mínima en proyección horizontal 'd (m)', tomando valores intermedios mediante interpolación lineal en la tabla del punto 1.2 (CTE DB SI 2).

 © Angulo formado por los planos exteriores de las fachadas consideradas, con un redondeo de 5°. Para fachadas paralelas y enfrentadas, se obtiene un valor de 0°.

La limitación del riesgo de propagación vertical del incendio por la fachada se efectúa reservando una franja de un metro de altura, como mínimo, con una resistencia al fuego mínima El 60, en las uniones verticales entre sectores de incendio distintos, entre zonas de riesgo especial alto y otras zonas más altas del edificio, o bien hacia una escalera protegida o hacia un pasillo protegido desde otras zonas.

En caso de existir elementos salientes aptos para impedir el paso de las llamas, la altura exigida a dicha franja puede reducirse en la dimensión del citado saliente.

EDIFICIO I E S

EDIFICIO I.E.S.				
	Propagación vertical			
Planta	Fachada ⁽¹⁾	Separación (2)	•	vertical mínima m) (3)
			Norma	Proyecto
PLANTA BAJA - PLANTA PISO	FACHADA EXTERIOR 30cm.	Sí	≥ 1.00	1.03
PLANTA BAJA - PLANTA PISO	FACHADA EXTERIOR 30cm FACHADA EXTERIOR DE HORMIGON e=45cm.	Sí	≥ 1.00	1.07

Notas

- (1) Se muestran las fachadas del edificio que incluyen huecos donde no se alcanza una resistencia al fuego El 60.
- ② Se consideran aqui las separaciones entre diferentes sectores de incendio, entre zonas de riesgo especial alto y otras zonas o hacia una escalera o pasillo protegido desde otras zonas, según el punto 1.3 (CTE DB SI 2).
- © Separación vertical minima ('d (m)') entre zonas de fachada con resistencia al fuego menor que El 60, minorada con la dimensión de los elementos sallentes aptos para impedir el paso de las llamas ('b') mediante la fórmula d ≥ 1 b (m), según el punto 1.3 (CTE DB SI 2).

La clase de reacción al fuego de los materiales que ocupen más del 10% de la superficie del acabado exterior de las fachadas o de las superficies interiores de las cámaras ventiladas que dichas fachadas puedan tener, será B-s3 d2 o mejor hasta una altura de 3,5 m como mínimo, en aquellas fachadas cuyo arranque inferior sea accesible al público, desde la rasante exterior o desde una cubierta; y en toda la altura de la fachada cuando ésta tenga una altura superior a 18 m, con independencia de dónde se encuentre su arranque.

1.2.3 SI 3 Evacuación de ocupantes

Compatibilidad de los elementos de evacuación

Existen establecimientos en el edificio cuyo uso (Pública Concurrencia) es distinto al principal (Administrativo), por lo que sus elementos de evacuación se adecúan a las condiciones particulares definidas en el apartado 1 (DB SI 3):

- Sus salidas de uso habitual y de emergencia, así como los recorridos hasta el espacio exterior seguro, se sitúan en elementos independientes de las zonas comunes del edificio, compartimentados respecto de éste según lo establecido en el DB SI 1 Propagación interior.
- Cálculo de ocupación, salidas y recorridos de evacuación 1.2.3.2

El cálculo de la ocupación del edificio se ha resuelto mediante la aplicación de los valores de densidad de ocupación indicados en la tabla 2.1 (DB SI 3), en función del uso y superficie útil de cada zona de incendio del edificio.

En el recuento de las superficies útiles para la aplicación de las densidades de ocupación, se ha tenido en cuenta el carácter simultáneo o alternativo de las distintas zonas del edificio, según el régingen de actividad y uso previsto del REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES mismo, de acuerdo al punto 2.2 (DB SI 3).

El número de salidas necesarias y la longitud máxima de los recorridos de evacueren asociados, se determinan según lo expuesto en la tabla 3.1 (DB SI 3), en función de la ocupación calculada. En los casos dello de se la cestifica de estre o proyecto en la tabla 3.1 (DB SI 3), en función de la ocupación calculada. En los casos dello de se la cestifica de estre o proyecto en la tabla 3.1 (DB SI 3), en función de la ocupación calculada. más de una salida, se aplican las hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta uta fila a la hipótesis de asignación de ocupantes del punta del hipótesis de asignación de ocupantes del punta del hipótesis de asignación de ocupantes del punta del hipótesis del punta del hipótesis de asignación de ocupantes del punta del hipótesis d de salidas a efectos de cálculo de capacidad de las escaleras, como para la determina com esta de cálculo de capacidad de las escaleras, como para la determina com esta de cálculo de capacidad de las escaleras, como para la determina com esta de cálculo de capacidad de las escaleras, como para la determina com esta de cálculo de capacidad de las escaleras, como para la determina com esta de cálculo de capacidad de las escaleras, como para la determina com esta de cálculo de capacidad de las escaleras, com esta de cálculo de capacidad de las escaleras, com esta de cálculo de capacidad de las escaleras, com esta de cálculo de capacidad de las escaleras, com esta de cálculo de capacidad de las escaleras, com esta de cálculo de capacidad de las escaleras, com esta de cálculo de capacidad de las escaleras, com esta de cálculo de capacidad de las escaleras, com esta de cálculo de capacidad de las escaleras, com esta de cálculo de capacidad de las escaleras, com esta de capacidad de las escaleras, com esta de capacidad de las escaleras, com esta de capacidad de las escaleras de la capacidad de la capacidad de las escaleras de la capacidad de las escaleras de la capacidad de la capacidad de las escaleras de la capacidad de la capacidad de la capacidad de las escaleras de la capacidad las salidas, establecido conforme a lo indicado en la tabla 4.1 (DB SI 3).

El Colegio Acredita la firma digital de los autores Número Fecha

23/12/2015

179500/52957

En la planta de desembarco de las escaleras, se añade a los recorridos de evacuación el flujo de personas que proviene de las mismas, con un máximo de 160 A personas (siendo 'A' la anchura, en metros, del desembarco de la escalera), según el punto 4.1.3 (DB SI 3); y considerando el posible carácter alternativo de la ocupación que desalojan, si ésta proviene de zonas del edificio no ocupables simultáneamente, según el punto 2.2 (DB SI 3).

EDIEICIO I E C

EDIFICIO I.E.S.										
	Ocupación, número de salidas y longitud de los recorridos de evacuación									
Planta	Planta $S_{\text{útil}}^{(1)} \rho_{\text{ocup}}^{(2)}$		P _{calc} (3)	Número	Número de salidas ⁽⁴⁾		Longitud del recorrido ⁽⁵⁾ (m)		Anchura de las salidas ⁽⁶⁾ (m)	
	(m²)	(m²/p)		Norma	Proyecto	Norma	Proyecto	Norma	Proyecto	
ZONA PABELLON (Uso Do	cente), od	cupaciór	n: 134 perso	nas					
				1	2	50	20	0.80	1.65	
PLANTA BAJA	661		134	1	2	50	35	0.80	0.00	2.05
				1	2	50	22		2.95	
ZONA AULAS (Uso	Docen	te), ocup	ación: 22	10 personas	6					
				1	2	50	24			
				1	2	50	32	0.80	1.65	
PLANTA PISO	353		150	1	2	50	30	1.00	1.70	
				1	2	50	17	1.00	1.70	
DI ANITA DA IA	170		70	1	2	50	18	1.10	1.10	
PLANTA BAJA	179		70	1	2	50	24	1.10	1.65	
CANTINA (Uso Do	cente),	ocupacio	n: 68 pe	rsonas						
PLANTA BAJA	147		68	1	1	25	17	0.80	1.65	
** *				*				*		

- (1) Superficie útil con ocupación no nula, Sutil (m²). Se contabiliza por planta la superficie afectada por una densidad de ocupación no nula, considerando también el carácter simultáneo o alternativo de las distintas zonas del edificio, según el régimen de actividad y de uso previsto del
- edificio y sus zonas subsidiarias, de acuerdo al punto 2.2 (DB SI 3).

 © Densidad de ocupación, ρ_{ocup} (m²/p); aplicada a los recintos con ocupación no nula del sector, en cada planta, según la tabla 2.1 (DB SI 3). valores expresados con una cifra decimal se refieren a densidades de ocupación calculadas, resultantes de la aplicación de distintos valores de
- © Ocupación de cálculo, P_{calc}, en número de personas. Se muestran entre paréntesis las ocupaciones totales de cálculo para los recorridos de evacuación considerados, resultados de la suma de ocupación en la planta considerada más aquella procedente de plantas sin origen de evacuación, o bien de la aportación de flujo de personas de escaleras, en la planta de salida del edificio, tomando los criterios de asignación del punto 4.1.3 (DB SI 3).

 (4) Número de salidas de planta exigidas y ejecutadas, según los criterios de ocupación y altura de evacuación establecidos en la tabla 3.1 (DB SI 3).
- © Longitud máxima admisible y máxima en proyecto para los recorridos de evacuación de cada planta y sector, en función del uso del mismo y del número de salidas de planta disponibles, según la tabla 3.1 (DBSI 3).
- (6) Anchura mínima exigida y anchura mínima dispuesta en proyecto, para las puertas de paso y para las salidas de planta del recorrido de evacuación, en función de los critérios de asignación y dimensionado de los elementos de evacuación (puntos 4.1 y 4.2 de DB SI 3). La anchura de toda hoja de puerta estará comprendida entre 0.60 y 1.23 m, según la tabla 4.1 (DB SI 3).

En las zonas de riesgo especial del edificio, clasificadas según la tabla 2.1 (DB SI 1), se considera que sus puntos ocupables son origen de evacuación, y se limita a 25 m la longitud máxima hasta la salida de cada zona. Además, se respetan las distancias máximas de los recorridos fuera de las zonas de riesgo especial, hasta sus salidas de planta correspondientes, determinadas en función del uso, altura de evacuación y número de salidas necesarias y ejecutadas.

EDIEICIO I E S

EDITICIO I.E.3.									
Longitud y número de salidas de los recorridos de evacuación para las zonas de riesgo especial									
Local o zona	Planta	Nivel de			Longitud del recorrido ⁽³⁾ (m)			ıra de las as ⁽⁴⁾ (m)	
		riesgo ⁽¹⁾	Norma	Proyecto	Norma	Proyecto	Norma	Proyecto	
CUARTO CPI	PLANTA BAJA	Bajo	1	1	25	5			
CUARTO CALDERAS	PLANTA BAJA	Bajo	1	1	25	5			

- Notas:

 (1) Nivel de riesgo (bajo, medio o alto) de la zona de riesgo especial, según la tabla 2.1 (DB SI 1).
 - 🖾 Número de salidas de planta exigidas y ejecutadas en la planta a la que pertenece la zona de riesgo especial, según la tabla 3.1 (DBSI 3).
 - (a) Longitud máxima permitida y máxima en proyecto para los recorridos de evacuación de cada zona de riesgo especial, hasta la salida de la zona (tabla 2.2, DB SI 1), y hasta su salida de planta correspondiente, una vez abandonada la zona de riesgo especial, según la tabla 3.1 (DB SI 3).
 - (4) Anchura mínima exigida tanto para las puertas de paso y las salidas de planta del red dimensionado de los elementos de evacuación (punto 4.2 (DB SI 3)), como para las puertas disp estará contenida entre 0.60 y 1.23 m, según la tabla 4.1 (DB SI 3).

PEGISTRO VACREDITACION PUEIZ3 12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Recha 869 982 659 081 538

1.2.3.3 Dimensionado y protección de escaleras y pasos de evacuación

Las escaleras previstas para evacuación se proyectan con las condiciones de protección necesarias en función de su ocupación, altura de evacuación y uso de los sectores de incendio a los que dan servicio, en base a las condiciones establecidas en la tabla 5.1 (DB SI 3).

Su capacidad y ancho necesario se establece en función de lo indicado en la tabla 4.1 (DB SI 3), sobre el dimensionado de los medios de evacuación del edificio.

1 2 3 4 Señalización de los medios de evacuación

Conforme a lo establecido en el apartado 7 (DB SI 3), se utilizarán señales de evacuación, definidas en la norma UNE 23034:1988, dispuestas conforme a los siguientes criterios:

- a) Las salidas de recinto, planta o edificio tendrán una señal con el rótulo "SALIDA", excepto en edificios de uso 'Residencial Vivienda' o, en otros usos, cuando se trate de salidas de recintos cuya superficie no exceda de 50 m², sean fácilmente visibles desde todos los puntos de dichos recintos y los ocupantes estén familiarizados con el edificio.
- b) La señal con el rótulo "Salida de emergencia" se utilizará en toda salida prevista para uso exclusivo en caso de emergencia.
- c) Se dispondrán señales indicativas de dirección de los recorridos, visibles desde todo origen de evacuación desde el que no se perciban directamente las salidas o sus señales indicativas y, en particular, frente a toda salida de un recinto con ocupación mayor que 100 personas que acceda lateralmente a un pasillo.
- d) En los puntos de los recorridos de evacuación en los que existan alternativas que puedan inducir a error, también se dispondrán las señales antes citadas, de forma tal que quede claramente indicada la alternativa correcta. Tal es el caso de determinados cruces o bifurcaciones de pasillos, así como de aquellas escaleras que, en la planta de salida del edificio, continúen su trazado hacia plantas más bajas, etc.
- e) En dichos recorridos, junto a las puertas que no sean salida y que puedan inducir a error en la evacuación, debe disponerse la señal con el rótulo "Sin salida" en lugar fácilmente visible pero en ningún caso sobre las hojas de las puertas.
- f) Las señales se dispondrán de forma coherente con la asignación de ocupantes que se pretenda hacer a cada salida de planta, conforme a lo establecido en el apartado 4 (DB SI 3).

Las señales serán visibles incluso en caso de fallo en el suministro al alumbrado normal. Cuando sean fotoluminiscentes. sus características de emisión luminosa cumplirán lo establecido en las normas UNE 23035-1:2003, UNE 23035-2:2003 y UNE 23035-4:2003 y su mantenimiento se realizará conforme a lo establecido en la norma UNE 23035-3:2003.

Control del humo de incendio

No se ha previsto en el edificio ningún sistema de control del humo de incendio, por no existir en él ninguna zona correspondiente a los usos recogidos en el apartado 8 (DB SI 3):

- a) Zonas de uso Aparcamiento que no tengan la consideración de aparcamiento abierto;
- b) Establecimientos de uso Comercial o Pública Concurrencia cuya ocupación exceda de 1000 personas;
- c) Atrios, cuando su ocupación, en el conjunto de las zonas y plantas que constituyan un mismo sector de incendio, exceda de 500 personas, o bien cuando esté prevista su utilización para la evacuación de más de 500 personas.

1.2.4 SI 4 Instalaciones de protección contra incendios

1.2.4.1 Dotación de instalaciones de protección contra incendios

El edificio dispone de los equipos e instalaciones de protección contra incendios requeridos según la tabla 1.1 de DB SI 4 Instalaciones de protección contra incendios. El diseño, ejecución, puesta en funcionamiento y mantenimiento de dichas instalaciones, así como sus materiales, componentes y equipos, cumplirán lo establecido, tanto en el artículo 3.1 del CTE, como en el Reglamento de Instalaciones de Protección contra Incendios (RD. 1942/1993, de 5 de noviembre), en sus disposiciones complementarias y en cualquier otra reglamentación específica que les sea de aplicación. En los locales y zonas de riesgo especial del edificio se dispone la correspondiente dotación de instalaciones indicada en la tabla 1.1 (DB SI 4), siendo ésta nunca inferior a la exigida con carácter general para el uso principal del edificio.

> **REGISTRO Y ACREDITACION** 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha 659 081 538

EDIFICIO I.E.S.

EDITION I.E.	,.								
	Dotación de instalaciones de protección contra incendios en los sectores de incendio								
Dotación	Extintores portátiles ⁽¹⁾	Bocas de incendio equipadas ⁽²⁾	Columna seca	Sistema de detección y alarma	Instalación automática de extinción				
GIMNASIO (Uso 'Docente')									
Norma	Sí Sí	No	No	No	No				
Proyecto	(4)	Sí (2)	No	No	No				
ZONA AULAS	(Uso 'Docente')			_					
Norma	Sí Sí	No	No	No	No				
Proyecto	(6)	No	No	No	No				
CANTINA (Us	CANTINA (Uso 'Docente')								
Norma	Sí Sí	No	No	No	No				
Proyecto	(1)	No	No	No	No				
Notos									

EDIFICIO I E S

EDITIOIO I.E.S.									
Dotación de instalaciones de protección contra incendios en las zonas de riesgo especial									
Referencia de la zona Nivel de riesgo Extintores portátiles ⁽¹⁾ Bocas de incendio equipadas Sector al que pertene									
CUARTO CPI	Bajo	Si		CUARTOS MAQUINAS					
CUARTO CALDERAS	Bajo	Si		CUARTOS MAQUINAS					

Notas

(1) Se indica el número de extintores dispuestos dentro de cada zona de riesgo especial y en las cercanías de sus puertas de acceso. Con la disposición indicada, los recorridos de evacuación dentro de las zonas de riesgo especial quedan cubiertos, cumpliendo la distancia máxima de 15 m desde todo origen de evacuación para zonas de riesgo bajo o medio, y de 10 m para zonas de riesgo alto, en aplicación de la nota al pie 1 de la tabla 1.1, DB SI 4. Los extintores que se han dispuesto, cumplen la eficacia mínima exigida: de polvo químico ABC polivalente, de eficacia 21A-144B-C.

1.2.4.2 Señalización de las instalaciones manuales de protección contra incendios

Los medios de protección contra incendios de utilización manual (extintores, bocas de incendio, hidrantes exteriores, pulsadores manuales de alarma y dispositivos de disparo de sistemas de extinción) están señalizados mediante las correspondientes señales definidas en la norma UNE 23033-1. Las dimensiones de dichas señales, dependiendo de la distancia de observación, son las siguientes:

- a) De 210 x 210 mm cuando la distancia de observación no es superior a 10 m.
- b) De 420 x 420 mm cuando la distancia de observación está comprendida entre 10 y 20 m.
- c) De 594 x 594 mm cuando la distancia de observación está comprendida entre 20 y 30 m.

Las señales serán visibles, incluso en caso de fallo en el suministro eléctrico del alumbrado normal, mediante el alumbrado de emergencia o por fotoluminiscencia. Para las señales fotoluminiscentes, sus características de emisión $luminosa\ cumplen\ lo\ establecido\ en\ las\ normas\ UNE\ 23035-1:2003,\ UNE\ 23035-2:2003\ y\ UNE\ 23035-4:2003\ y\ su$ mantenimiento se realizará conforme a lo establecido en la norma UNE 23035-3:2003.

> **REGISTRO Y ACREDITACION** 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha 869 982 659 081 538

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

⁽¹⁾ Se indica el número de extintores dispuestos en cada sector de incendio. Con dicha disposición, los recorridos de evacuación quedan cubiertos, cumpliendo la distancia máxima de 15 m desde todo origen de evacuación, de acuerdo a la tabla 1.1, DB SI 4. ⁽²⁾ Se indica el número de equipos instalados, de 25 mm, de acuerdo a la tabla 1.1, DB SI 4.

Los extintores que se han dispuesto, cumplen la eficacia mínima exigida: de polvo químico ABC polivalente, de eficacia 21A-144B-C.

1.2.5 SI 5 Intervención de los bomberos

1.2.5.1 Condiciones de aproximación, entorno y accesibilidad por fachada

Como la altura de evacuación de los edificios es inferior a 9 m, según el punto 1.2 (CTE DB SI 5) no es necesario justificar las condiciones de accesibilidad por fachada para el personal del servicio de extinción de incendio; tampoco se precisa la justificación de las condiciones del vial de aproximación, ni del espacio de maniobra para los bomberos, a disponer en las fachadas donde se sitúan los accesos al edificio.

SI 6 Resistencia al fuego de la estructura

1.2.6.1 Elementos estructurales principales

La resistencia al fuego de los elementos estructurales principales del edificio es suficiente si se cumple alguna de las siguientes condiciones:

- a) Alcanzan la clase indicada en las tablas 3.1 y 3.2 (CTE DB SI 6 Resistencia al fuego de la estructura), que representan el tiempo de resistencia en minutos ante la acción representada por la curva normalizada tiempotemperatura en función del uso del sector de incendio o zona de riesgo especial, y de la altura de evacuación del edificio.
- b) Soportan dicha acción durante el tiempo equivalente de exposición al fuego indicado en el Anejo B (CTE DB SI Seguridad en caso de incendio).

EDIEICIO I E S

EDITICIO I.E.S.	Resistencia al fuego de la estructura								
Sector o local de riesgo especial (1)	ector o local Uso de la zona de riesgo inferior al forjado Planta superior al forjado Sapartes Vigas Forjados				Estabilidad al fuego mínima de los elementos estructurales ⁽³⁾				
CANTINA	Docente	PLANTA PISO	estructura de hormigón	estructura de hormigón	estructura de hormigón	R 90			
ZONA AULAS	Docente	CUBIERTA	estructura de hormigón	estructura de hormigón	estructura de hormigón	R 60			

Murcia, octubre de 2015

Fdo. Ana Gonzalo Vivancos y Marta Serrano Martínez **Arquitectas**

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha 9 869 982 659 081 538

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

O Sector de incendio, zona de riesgo especial o zona protegida de mayor limitación en cuanto al tiempo de resistencia al fuego requerido a sus elementos estructurales. Los elementos estructurales interiores de una escalera protegida o de un pasillo protegido serán como minimo R 30. Cuando se trate de escaleras especialmente protegidas no es necesario comprobar la resistencia al fuego de los elementos estructurales.

O Se define el material estructural empleado en cada uno de los elementos estructurales principales (soportes, vigas, forjados, losas, tirantes, etc.)

D La resistencia al fuego de un elemento se establece comprobando las dimensiones de su sección transversal, obteniendo su resistencia por los métodos simplificados de cálculo dados en los Anejos B a F (CTE DB SI Seguridad en caso de incendio), aproximados para la mayoría de las situaciones habituales.

1.3 **DB-SUA: SEGURIDAD DE UTILIZACION Y ACCESIBILIDAD**

1.3.1 SU 1 Seguridad frente al riesgo de caídas

1.3.1.1 Resbaladicidad de los suelos

(Clasificación del suelo en función de su grado de deslizamiento UNE ENV 12633:2003)

Clase

		NORMA	PROYECTO
X	Zonas interiores secas con pendiente menor que el 6%	1	1
	Zonas interiores secas con pendiente mayor o igual que el 6% y escaleras	2	
×	Zonas interiores húmedas (entrada al edificio o terrazas cubiertas) con pendiente menor que el 6%	2	2
	Zonas interiores húmedas (entrada al edificio o terrazas cubiertas) con pendiente mayor o igual que el 6% y escaleras	3	
	Zonas exteriores y piscinas	3	

1.3.1.2 Discontinuidades en el pavimento

		NORMA	PROYECTO
×	El suelo no presenta imperfecciones o irregularidades que supongan riesgo de caídas como consecuencia de traspiés o de tropiezos	Diferencia de nivel < 6 mm	0 mm
	Pendiente máxima para desniveles de 50 mm como máximo, excepto para acceso desde espacio exterior	≤ 25%	
X	Perforaciones o huecos en suelos de zonas de circulación	Ø ≤ 15 mm	0 mm
	Altura de las barreras de protección usadas para la delimitación de las zonas de circulación	≥ 800 mm	
×	Nº mínimo de escalones en zonas de circulación	3	3
	Excepto en los casos siguientes:		
	a) en zonas de uso restringido,		
	b) en las zonas comunes de los edificios de uso Residencial Vivienda,		
	c) en los accesos y en las salidas de los edificios,		
	d) en el acceso a un estrado o escenario.		

1.3.1.3 Desniveles

1.3.1.3.1 Protección de los desniveles

×	Barreras de protección en los desniveles, huecos y aberturas (tanto horizontales como verticales) balcones, ventanas, etc. con diferencia de cota 'h'	h ≥ 550 mm
×	Señalización visual v táctil en zonas de uso público	h ≤ 550 mm Diferenciación a 250 mm del borde

1.3.1.3.2 Características de las barreras de protección

1.3.1.3.2.1 Altura

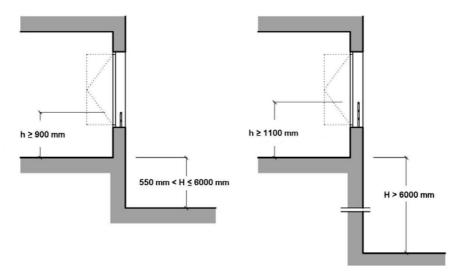
		NORMA	PROYECTO
X	Diferencias de cota de hasta 6 metros	≥ 900 mm	1000
	Otros casos	≥ 1100 mm	
	Huecos de escalera de anchura menor que 400 mm	≥ 900 mm	

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG

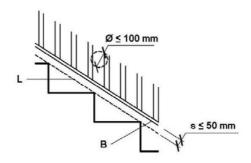

23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Pecha 2 - 659 081 538

Medición de la altura de la barrera de protección (ver gráfico)



1.3.1.3.2.2 Resistencia

Resistencia y rigidez de las barreras de protección frente a fuerzas horizontales Ver tablas 3.1 y 3.2 (Documento Básico SE-AE Acciones en la edificación)

1.3.1.3.2.3 Características constructivas

		NORMA	PROYECTO
	No son escalables		
	No existirán puntos de apoyo en la altura accesible (Ha)	200 ≤ Ha ≤ 700 mm	
X	Limitación de las aberturas al paso de una esfera	Ø ≤ 100 mm	90 mm
X	Altura de la parte inferior de la barandilla	≤ 50 mm	20 mm

1.3.1.4 Escaleras y rampas No procede

1.3.1.4.1 Escaleras de uso general

1.3.1.4.1.1 Peldaños

▼ Tramos rectos de escalera

,	NORMA	PROYECTO	
Huella	<u>rth</u> REGISTRO Y A	ACREDIA SECTION 2	23/12/2015
Contrahuella	E PORTMENTOS	PROFESIONALE \$85 1179	500/52957
Contrahuella	540 ≤ Celegia Pficial		cia MMPG
	Autoresmmarta serra Ana Luisa de	NO MARTINEZ GONZALO VIVANCOS	
puitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🛭 Tlf: 61	El Colegio Acredita la f	irma digital de los autores ha sido registrado y acreditado.	Número Fecha
C/ González Adalid, 11, 1° izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61	869 982 - 659 081 538	ha sido registrado y acreditado.	Fecha

$\ \ \square$ Escalera de trazado curvo

	NORMA	PROYECTO
Huella en el lado más estrecho	≥ 170 mm	
Huella en el lado más ancho	≤440 mm	

1.3.1.4.1.2 Tramos

	NORMA	PROYECTO
Número mínimo de peldaños por tramo	3	3
☑ Altura máxima que salva cada tramo	≤ 3,20 m	
🗵 En una misma escalera todos los peldaños tienen la misma contrahuella		CUMPLE
🗵 En tramos rectos todos los peldaños tienen la misma huella		CUMPLE
En tramos curvos, todos los peldaños tienen la misma huella medida a lo largequidistante de uno de los lados de la escalera	go de toda línea	
En tramos mixtos, la huella medida en el tramo curvo es mayor o igual a la h rectas	uella en las partes	

1.3.1.4.1.3 Mesetas

🗵 Entre tramos de una escalera con la misma dirección:

	NORMA	PROYECTO
Anchura de la meseta	≥ Anchura de la escalera	CUMPLE
Longitud de la meseta, medida sobre su eje	≥ 1000 mm	1200

Anchura de la meseta	≥ Anchura de la escalera	CUMPLE
Longitud de la meseta, medida sobre su eje	≥ 1000 mm	1200

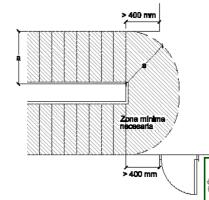


Figura 4.4 Cambio de dirección entre dos tram

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG 23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tif: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado.

Número Fecha

869 982 - 659 081 538 Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

1.3.1.4.1.4 Pasamanos

Pasamanos continuo:

		NORMA	PROYECTO
	Obligatorio en un lado de la escalera	Desnivel salvado ≥ 550 mm	
X	Obligatorio en ambos lados de la escalera	Anchura de la escalera ≥ 1200 mm	CUMPLE

Pasamanos intermedio:

	NORMA	PROYECTO
$\overline{\mathbb{X}}$ Son necesarios cuando el ancho del tramo supera el límite de la norma	≥ 2400 mm	CUMPLE
	≤ 2400 mm	CUMPLE

Altura del pasamanos	900 ≤ H ≤ 1100 mm	1000 mm

Configuración del pasamanos:

		NORMA	PROYECTO
	Firme y fácil de asir		
X	Separación del paramento vertical	≥ 40 mm	50 mm
	El sistema de sujeción no interfiere el paso continuo de la mano		

1.3.1.4.1.5 Rampas

No procede

1.3.1.5 Limpieza de los acristalamientos exteriores

Se cumplen las limitaciones geométricas para el acceso desde el interior (ver figura).	
Dispositivos de bloqueo en posición invertida en acristalamientos reversibles	

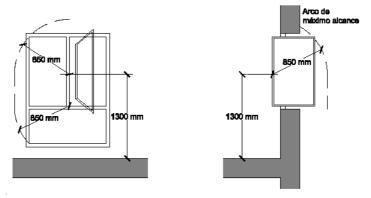
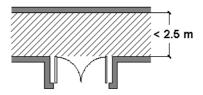


Figura 5.1 Limpieza de acristalamientos desde el interior

1.3.2 SU 2 Seguridad frente al riesgo de impacto o de atrapamiento

1.3.2.1 Impacto

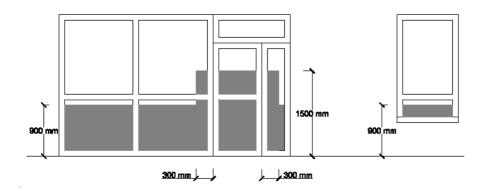

1.3.2.1.1 Impacto con elementos fijos:

 ✓ Altura libre en zonas de circulación de uso restringido ✓ Altura libre en zonas de circulación no restringidas ✓ Altura libre en umbrales de puertas 	NORMA PROYECTO REGISTRO Y ACREDITACION 23/12/2015 26/200/Mentos profesionales 179500/52957 26/200/Mentos profesionales 179500/52957 Autores 90/Mental de Arquites 90 de Murcia Autores 90/Mental Serrano Martin 21/00 Ana Luisa de Gonzalo Vivancos
Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61	El Colegio Acredita la firma digital de los autores Número Fecha 869 982 - 659 081 538

×	Altura de los elementos fijos que sobresalgan de las fachadas y que estén situados sobre zonas de circulación	≥ 2200 mm	3600
	Vuelo de los elementos salientes en zonas de circulación con altura comprendida entre 150 mm y 2000 mm, medida a partir del suelo.	≤ 150 mm	
	Se disponen elementos fijos que restringen el acceso a elementos volados con altura inferior a 2000 mm.		

1.3.2.1.2 Impacto con elementos practicables:

En zonas de uso general, el barrido de la hoja de puertas laterales a vías de circulación no invade el pasillo si éste tiene una anchura menor que 2,5 metros.	CUMPLE
--	--------



1.3.2.1.3 Impacto con elementos frágiles:

Superficies acristaladas situadas en la	as áreas con riesgo de impacto con barrera de protecció	n SU 1, Apartado 3.2
---	---	----------------------

Resistencia al impacto en superficies acristaladas situadas en áreas con riesgo de impacto sin barrera de protección:

		NORMA	PROYECTO
X	Diferencia de cota entre ambos lados de la superficie acristalada entre 0,55 m y 12 m	Nivel 2	NIVEL 2
	Diferencia de cota entre ambos lados de la superficie acristalada mayor que 12 m	Nivel 1	
	Otros casos	Nivel 3	

1.3.2.1.4 Impacto con elementos insuficientemente perceptibles:

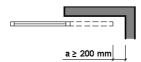
Grandes superficies acristaladas:

	NORMA PROYECTO
Señalización inferior	850 < h < 1100 mm 900
ヌ Señalización superior	1500 < h < 1700 mm 1600
Altura del travesaño para señalización inferior	850 < h < 1100 mm 900
Separación de montantes	Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61 El Colegio Acredita la firma digital de los autores
El presente documento ha sido registrado y acreditado.


Número
Fecha
1 16: 61 9 869 982 - 659 081 538

Puertas de vidrio que no disponen de elementos que permitan su identificación:

	NORMA	PROYECTO
Señalización inferior	850 < h < 1100 mm	
Señalización superior	1500 < h < 1700 mm	
Altura del travesaño para señalización inferior	850 < h < 1100 mm	
Separación de montantes	≤ 600 mm	

1.3.2.2 Atrapamiento

		NORMA	PROYECTO
- 1 1	Distancia desde la puerta corredera (accionamiento manual) hasta el objeto fijo más próximo	≥ 200 mm	
	Se disponen dispositivos de protección adecuados al tipo de accionamiento de apertura y cierre automáticos.	para elementos	

1.3.3 SU 3 Seguridad frente al riesgo de aprisionamiento en recintos

Cuando las puertas de un recinto tengan dispositivo para su bloqueo desde el interior y las personas puedan quedar accidentalmente atrapadas dentro del mismo, existirá algún sistema de desbloqueo de las puertas desde el interior del recinto. Excepto en el caso de los baños o los aseos de viviendas, dichos recintos tendrán iluminación controlada desde su interior.

Las dimensiones y la disposición de los pequeños recintos y espacios serán adecuados para garantizar a los posibles usuarios en silla de ruedas la utilización de los mecanismos de apertura y cierre de las puertas y el giro en su interior, libre del espacio barrido por las puertas.

La fuerza de apertura de las puertas de salida será de 140 N, como máximo, excepto en las de los recintos a los que se refiere el punto anterior, en las que será de 25 N, como máximo.

1.3.4 SU 4 Seguridad frente al riesgo causado por iluminación inadecuada

1.3.4.1 Alumbrado normal en zonas de circulación

			NORMA	PROYECTO
Zona		Iluminancia mínima [l	ux]	
	Exclusiva para personas	Escaleras	20	
Exterior		Resto de zonas	20	
	Para vehículos o mixtas		20	
	Evolusivo poro poropos	Escaleras	100	110
Interior	Exclusiva para personas	Resto de zonas	100	100
	Para vehículos o mixtas		50	
Factor de uniformidad media		fu ≥ 40 %	41 %	

1.3.4.2 Alumbrado de emergencia

Dotación:

Contarán con alumbrado de emergencia:	
Recorridos de evacuación	
Aparcamientos cuya superficie construida exceda de 100 m²	
🗵 Locales que alberguen equipos generales de las instalaciones de protección	REGISTRO Y ACREDITACION 23/12/2015
Locales de riesgo especial	DE DOCUMENTOS PROFESIONALES 179500/52957
□ Lugares en los que se ubican cuadros de distribución o de accionamiento de la lugares en los que se ubican cuadros de distribución o de accionamiento de la lugares en los que se ubican cuadros de distribución o de accionamiento de la lugares en los que se ubican cuadros de distribución o de accionamiento de la lugares.	nstelación de alumbrado ctos de Murcia MMPG
∠ Las señales de seguridad Au	Ores: MARTA SERRANO MARTINEZ
	ANA LUISA DE GONZALO VIVANCOS
Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia III: 61) 869	El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Fecha 982 - 659 081 538

Disposición de las luminarias:

	NORMA	PROYECTO
⊠ Altura de colocación	h ≥ 2 m	H = 2.64 m
Se dispondrá una luminaria en:		
☑ Cada puerta de salida.		
☐ Señalando el emplazamiento de un equipo de seguridad.		

Puertas existentes en los recorridos de evacuación.

Escaleras (cada tramo recibe iluminación directa).

En cualquier cambio de nivel.

Características de la instalación:

Será fija.
Dispondrá de fuente propia de energía.
Entrará en funcionamiento al producirse un fallo de alimentación en las zonas de alumbrado normal.
El alumbrado de emergencia en las vías de evacuación debe alcanzar, al menos, el 50% del nivel de iluminación requerido al cabo de 5 segundos y el 100% a los 60 segundos.

Condiciones de servicio que se deben garantizar (durante una hora desde el fallo):

			NORMA	PROYECTO	
\	Vías de evacuación de anchura n 2m	lluminancia en el eje central	≥ 1 lux	1 luxes	
X	2m	lluminancia en la banda central	≥ 0.5 luxes	0.7 luxes	
	Vías de evacuación de anchura > 2m	Pueden ser tratadas como varias bandas de anchura n 2m			

		NORMA	PROYECTO
X	Relación entre iluminancia máxima y mínima a lo largo de la línea central	≤ 40:1	1:1
	Puntos donde estén situados: equipos de seguridad, instalaciones de protección contra incendios y cuadros de distribución del alumbrado.	lluminancia ≥ 5 luxes	6 luxes
	Valor mínimo del Índice de Rendimiento Cromático (Ra)	Ra ≥ 40	Ra = 80.00

Iluminación de las señales de seguridad:

	_			
			NORMA	PROYECTO
X	Luminancia de cualquier área de color de seguridad		≥ 2 cd/m²	3 cd/m²
×	Relación entre la luminancia máxima/mínima dentro del color blanco o de seguridad		≤ 10:1	10:1
-	Relación entre la luminancia L _{blanca} , y la luminancia L _{color} > 10		≥ 5:1	
×			≤ 15:1	10:1
×		≥ 50%	> 5 s	5 s
	Tiempo en el que se debe alcanzar cada nivel de iluminación		> 60 s	60 s

1.3.5 SU 5 Seguridad frente al riesgo causado por situaciones de alta ocupación

Las condiciones establecidas en esta sección son de aplicación a los graderíos de estadios, pabellones polideportivos, centros de reunión, otros edificios de uso cultural, etc. previstos para más de 3000 espectadores de pie.

Por lo tanto, para este proyecto, no es de aplicación.

1.3.6 SU 6 Seguridad frente al riesgo de ahogamiento

enseñanza, las cuales tendrán las características propias de la actividad que se desarrollegio Oficial de Arquitectos de Murcia MMPG

Quedan excluidas las piscinas de viviendas unifamiliares, así como los baños taumates, luas pareterandentimento de

1.3.6 SU 6 Seguridad frente al riesgo de ahogamiento

REGISTRO Y ACREDITACION 23/12/2015

Esta sección es aplicable a las piscinas de uso colectivo, salvo las destina de destin 23/12/2015

ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

hidroterapia y otros dedicados a usos exclusivamente médicos, los cuales cumplirán lo dispuesto en su reglamentación específica

Por lo tanto, para este proyecto, no es de aplicación.

1.3.7 SU 7 Seguridad frente al riesgo causado por vehículos en movimiento

Esta sección es aplicable a las zonas de uso aparcamiento y a las vías de circulación de vehículos existentes en los edificios, con excepción de los aparcamientos de viviendas unifamiliares.

Por lo tanto, para este proyecto, no es de aplicación.

1.3.8 SU 8 Seguridad frente al riesgo causado por la acción del rayo

1.3.8.2 **EDIFICIO I.E.S.:**

1.3.8.3 Procedimiento de verificación

Será necesaria la instalación de un sistema de protección contra el rayo cuando la frecuencia esperada de impactos (Ne) sea mayor que el riesgo admisible (Na), excepto cuando la eficiencia 'E' este comprendida entre 0 y 0.8.

1.3.8.3.1.1 Cálculo de la frecuencia esperada de impactos (Ne)

$$N_e = N_g A_e C_1 10^{-6}$$

siendo

- Ng: Densidad de impactos sobre el terreno (impactos/año,km²).
- Ae: Superficie de captura equivalente del edificio aislado en m2.
- C1: Coeficiente relacionado con el entorno.

Ng (Alcantarilla) = 1.50 impactos/año,km²

 $A_e = 7210.96 \text{ m}^2$

C₁ (próximo a otros edificios o árboles de la misma altura o más altos) = 0.50

Ne = 0.0054 impactos/año

1.3.8.3.1.2 Cálculo del riesgo admisible (Na)

$$N_a = \frac{5.5}{C_2 C_3 C_4 C_5} 10^{-3}$$

siendo

- C2: Coeficiente en función del tipo de construcción.
- C₃: Coeficiente en función del contenido del edificio.
- C4: Coeficiente en función del uso del edificio.
- C₅: Coeficiente en función de la necesidad de continuidad en las actividades que se desarrollan en el edificio.

C₂ (estructura de hormigón/cubierta de hormigón) = 1.00

 C_3 (otros contenidos) = 1.00

C₄ (publica concurrencia, sanitario, comercial, docente) = 3.00

C₅ (resto de edificios) = 1.00

Na = 0.0018 impactos/año

REGISTRO Y ACREDITACION
DE DOCUMENTOS PROFESIONALES
179500/52957

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado.

1.3.8.3.1.3 Verificación

> Altura del edificio = 8.9 m <= 43.0 m $N_e = 0.0054 > N_a = 0.0018 \text{ impactos/año}$

1.3.8.3.2 Descripción de la instalación

1.3.8.3.2.1 Nivel de protección

Conforme a lo establecido en el apartado anterior, se determina que no es necesario disponer una instalación de protección contra el rayo. El valor mínimo de la eficiencia 'E' de dicha instalación se determina mediante la siguiente

$$E = 1 - \frac{N_a}{N_e}$$

N_a = 0.0018 impactos/año

N_e = 0.0054 impactos/año

E = 0.661

Como:

0 <= 0.661 < 0.80

Nivel de protección: IV

No es necesario instalar un sistema de protección contra el rayo

Murcia, octubre de 2015

Fdo. Ana Gonzalo Vivancos y Marta Serrano Martínez Arquitectas

> **REGISTRO Y ACREDITACION** DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

23/12/2015

1.4 **DB-HS: SALUBRIDAD**

1.4.1 Exigencia Básica HS 1: Protección frente a la humedad

Diseño

Los elementos constructivos (muros, suelos, fachadas, cubiertas,...) deberán cumplir las condiciones de diseño del apartado 2 (HS1) relativas a los elementos constructivos.

La definición de cada elemento constructivo es la siguiente:

Fachadas

Fachada edificio

R) Resistencia a la filtración del revestimiento exterior:

R2EI revestimiento exterior debe tener al menos una resistencia alta a la filtración. Se considera que proporcionan esta resistencia los revestimientos discontinuos rígidos fijados mecánicamente dispuestos de tal manera que tengan las mismas características establecidas para los discontinuos de R1, salvo la del tamaño de las piezas.

B) Resistencia a la filtración de la barrera contra la penetración de agua:

B1 Debe disponerse al menos una barrera de resistencia media a la filtración. Se consideran como tal los siguientes elementos:

- cámara de aire sin ventilar;
- aislante no hidrófilo colocado en la cara interior de la hoja principal.

C) Composición de la hoja principal:

C1 Debe utilizarse al menos una hoja principal de espesor medio. Se considera como tal una fábrica cogida con mortero de:

- ½ pie de ladrillo cerámico, que debe ser perforado o macizo cuando no exista revestimiento exterior o cuando exista un revestimiento exterior discontinuo o un aislante exterior fijados mecánicamente;
- 12 cm de bloque cerámico, bloque de hormigón o piedra natural.

H) Higroscopicidad del material componente de la hoja principal:

H1 Debe utilizarse un material de higroscopicidad baja, que corresponde a una fábrica de:

- ladrillo cerámico de absorción ≤ 10%, según el ensayo descrito en UNE 67027:1984;
- piedra natural de absorción ≤ 2%, según el ensayo descrito en UNE-EN 13755:2002.

J) Resistencia a la filtración de las juntas entre las piezas que componen la hoja principal:

J1 Las juntas deben ser al menos de resistencia media a la filtración. Se consideran como tales las juntas de mortero sin interrupción excepto, en el caso de las juntas de los bloques de hormigón, que se interrumpen en la parte intermedia de la hoia:

Véase apartado 5.1.3.1 para condiciones de ejecución relativas a las juntas.

N) Resistencia a la filtración del revestimiento intermedio en la cara interior de la hoja principal:

N1 Debe utilizarse al menos un revestimiento de resistencia media a la filtración. Se considera como tal un enfoscado de mortero con un espesor mínimo de 10 mm.

Condiciones de los puntos singulares

Se respetarán las condiciones de disposición de bandas de refuerzo y de terminación, así como las de continuidad o discontinuidad relativas al sistema de impermeabilización que se emplee. (Condiciones de los puntos singulares (apartado 2.3.3 HS1)

Juntas de dilatación

En el proyecto no existen juntas de dilatación.

Arranque de la fachada desde la cimentación

En el proyecto no existen arranque de fachada desde la cimentación.

Encuentros de la fachada con los forjados

Se adoptará alguna de las dos soluciones de la imagen:

disposición de una junta de desolidarización entre la hoja principal de la figura de 2 cm que debe rellenarse después de la companya de 2 cm que debe rellenarse de 2 cm que de 2 cm que debe rellenarse de 2 cm que de 3 cm que material cuya elasticidad sea compatible con la deformación prevista del colegio Oficial de enquitación de MMPG con un goterón;

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61 El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Pecha

refuerzo del revestimiento exterior con armaduras dispuestas a lo largo del forjado de tal forma que sobrepasen el elemento hasta 15 cm por encima del forjado y 15 cm por debajo de la primera hilada de la fábrica.

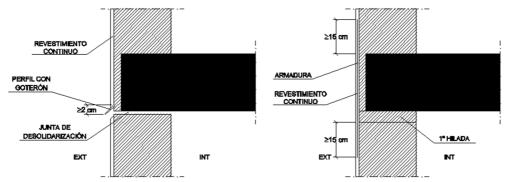


Figura 2.8 Ejemplos de encuentros de la fachada con los forjados

Cuando el paramento exterior de la hoja principal sobresalga del borde del forjado, el vuelo será menor que 1/3 del espesor de dicha hoja.

Encuentros de la fachada con los pilares

Cuando la hoja principal esté interrumpida por los pilares y con piezas de menor espesor que la hoja principal por la parte exterior de los pilares, para conseguir la estabilidad de estas piezas.

Se dispondrá una armadura o cualquier otra solución que produzca el mismo efecto. (Véase la figura 2.9).

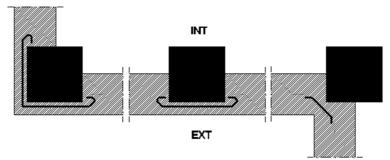
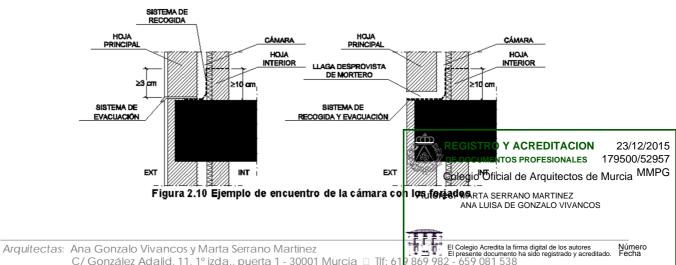



Figura 2.9 Ejemplo de encuentro de la fachada con los pilares

Encuentros de la cámara de aire ventilada con los forjados y los dinteles

En los puntos en los que la cámara quede interrumpida por un forjado o un dintel se dispondrá un sistema de recogida y evacuación del agua filtrada o condensada en la misma.

Como sistema de recogida de agua se utilizará un elemento continuo impermeable (lámina, perfil especial, etc.) dispuesto a lo largo del fondo de la cámara, con inclinación hacia el exterior, de tal forma que su borde superior esté situado como mínimo a 10 cm del fondo y al menos 3 cm por encima del punto más alto del sistema de evacuación (Véase la figura 2.10) y cuando se disponga una lámina, ésta se introducirá en la hoja interior en todo su espesor.

C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

Para la evacuación se dispondrá uno de los sistemas siguientes:

- a) un conjunto de tubos de material estanco que conduzcan el agua al exterior, separados 1,5 m como máximo (Véase la figura 2.10);
- b) un conjunto de llagas de la primera hilada desprovistas de mortero, separadas 1,5 m como máximo, a lo largo de las cuales se prolonga hasta el exterior el elemento de recogida dispuesto en el fondo de la cámara.



Figura 2.10 Ejemplo de encuentro de la cámara con los forjados

Encuentro de la fachada con la carpintería

En las carpinterías retranqueadas respecto del paramento exterior de la fachada y grado de impermeabilidad exigido igual a 5 se dispondrá precerco y se colocará una barrera impermeable en las jambas entre la hoja principal y el precerco, o en su caso el cerco, prolongada 10 cm hacia el interior del muro (Véase la figura 2.11).

Figura 2.11 Ejemplo de encuentro de la fachada con la carpintería

Se rematará el alféizar con un vierteaguas para evacuar hacia el exterior el agua de lluvia que llegue a él y evitar que alcance la parte de la fachada inmediatamente inferior al mismo y se dispondrá un goterón en el dintel para evitar que el agua de lluvia discurra por la parte inferior del dintel hacia la carpintería o se adoptarán soluciones que produzcan los mismos efectos.

Se sellará la junta entre el cerco y el muro con un cordón que debe estar introducido en un llagueado practicado en el muro de forma que quede encajado entre dos bordes paralelos.

El vierteaguas tendrá una pendiente hacia el exterior de 10° como mínimo, será impermeable o se dispondrá sobre una barrera impermeable fijada al cerco o al muro que se prolongue por la parte trasera y por ambos lados del vierteaguas y que tenga una pendiente hacia el exterior de 10° como mínimo.

659 081 538

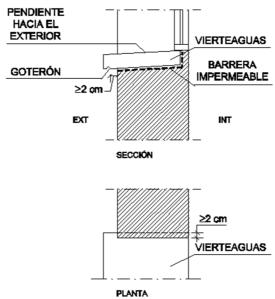


Figura 2.12 Ejemplo de vierteaguas

El vierteaguas dispondrá de un goterón en la cara inferior del saliente, separado del paramento exterior de la fachada al menos 2 cm, y su entrega lateral en la jamba debe ser de 2 cm como mínimo. (Véase la figura 2.12).

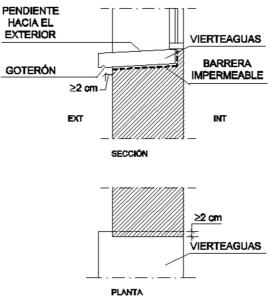


Figura 2.12 Ejemplo de vierteaguas

Antepechos y remates superiores de las fachadas

Los antepechos se rematarán con albardillas para evacuar el agua de lluvia que llegue a su parte superior y evitar que alcance la parte de la fachada inmediatamente inferior al mismo o se adoptará otra solución que produzca el mismo efecto.

Las albardillas tendrán tener una inclinación de 10° como mínimo, dispondrán de goterones en la cara inferior de los salientes hacia los que discurre el agua, separados de los paramentos correspondientes del antepecho al menos 2 cm y serán impermeables o se dispondrán sobre una barrera impermeable que tenga una pendiente hacia el exterior de 10° como mínimo.

Se dispondrán juntas de dilatación cada dos piezas cuando seam de productivamentos y las juntas entre las albardillas se realizarán de tal manera recommendado REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES Se dispondrán juntas de dilatación cada dos piezas cuando sean de piedra o prefabricadas y cada 2 m cuando sean sean impermeables con un sellado

Existen anclajes de elementos tales como barandillas o mástiles que se realizarán en un plano horizontal de la fachada.

Autores: MARTA SERRANO MARTINEZ

REGISTRO Y ACREDITACION 23/12/2015 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

ANA LUISA DE GONZALO VIVANCOS

659 081 538

En estos casos la junta entre el anclaje y la fachada se realizará de tal forma que se impida la entrada de agua a través de ella mediante el sellado, un elemento de goma, una pieza metálica u otro elemento que produzca el mismo efecto.

Aleros o cornisas

Los aleros y las cornisas de constitución continua tendrán una pendiente hacia el exterior para evacuar el aqua de10º como mínimo y los que sobresalgan más de 20 cm del plano de la fachada deberán

- ser impermeables o tener la cara superior protegida por una barrera impermeable, para evitar que el agua se filtre a través de ellos;
- b) disponer en el encuentro con el paramento vertical de elementos de protección prefabricados o realizados in situ que se extiendan hacia arriba al menos 15 cm y cuyo remate superior se resuelva de forma similar a la descrita en el apartado 2.4.4.1.2, para evitar que el agua se filtre en el encuentro y en el remate;
- disponer de un goterón en el borde exterior de la cara inferior para evitar que el agua de lluvia evacuada alcance la fachada por la parte inmediatamente inferior al mismo.

o en el caso de que no se ajusten a las condiciones antes expuestas debe adoptarse otra solución que produzca el mismo efecto.

La junta de las piezas con goterón tendrá la forma del mismo para no crear a través de ella un puente hacia la fachada.

Cubiertas

Condiciones de las soluciones constructivas

La cubierta dispondrá de un sistema de formación de pendientes cuando la cubierta sea plana o cuando sea inclinada y su soporte resistente no tenga la pendiente adecuada al tipo de protección y de impermeabilización que se vaya a utilizar.

Ya que se prevén se produzcan condensaciones en algún elemento, según el cálculo descrito en la sección HE1 del DB "Ahorro de energía", la cubierta dispondrá de una barrera contra el vapor inmediatamente por debajo del aislante térmico.

Ya que debe evitarse el contacto entre materiales químicamente incompatibles, la cubierta dispondrá de una capa separadora bajo el aislante térmico.

Ya que debe evitarse el contacto entre materiales químicamente incompatibles, la cubierta dispondrá de una capa separadora bajo la capa de impermeabilización.

La cubierta dispondrá de un aislante térmico, según se determine en la sección HE1 del DB "Ahorro de energía".

Ya que evitarse el contacto entre materiales químicamente incompatibles o la adherencia entre la impermeabilización y el elemento que sirve de soporte en sistemas no adheridos, la cubierta dispondrá de una capa separadora bajo la capa de impermeabilización.

En alguna cubierta del proyecto debe evitarse la adherencia entre la capa de protección y la capa de impermeabilización.

Existirá una capa separadora entre la capa de protección y la capa de impermeabilización.

En alguna cubierta del proyecto se utiliza como capa de protección solado flotante colocado sobre soportes, grava, una capa de rodadura de hormigón, una capa de rodadura de aglomerado asfáltico dispuesta sobre una capa de mortero o tierra vegetal.

Existirá una capa separadora entre la capa de protección y la capa de impermeabilización, se dispondrá inmediatamente por encima de la capa separadora, una capa drenante y sobre ésta una capa filtrante y en el caso de utilizarse grava la capa separadora será antipunzonante;

En alguna cubierta del proyecto se utiliza tierra vegetal como capa de protección.

Existirá una capa separadora entre la capa de protección y el aislante térmico. La capa separadora será antipunzonante.

Alguna cubierta del proyecto se utiliza grava como capa de protección.

Existirá una capa separadora entre la capa de protección y el aislante térmico. La capa separadora será filtrante, capaz de impedir el paso de áridos finos y antipunzonante.

Existen cubiertas planas sin capa de impermeabilización autoprotegida.

La cubierta dispondrá de una capa de protección.

La cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta dispondrá de un sistema de evacuación de aguas, que pue la cubierta de cub La cubierta dispondrá de un sistema de evacuación de aguas, que pur portenta dispondrá de un sistema de evacuación de aguas, que pur portenta dispondrá de un sistema de evacuación de aguas, que pur portenta dispondrá de un sistema de evacuación de aguas, que pur portenta dispondrá de un sistema de evacuación de aguas, que pur portenta dispondrá de un sistema de evacuación de aguas, que pur portenta dispondrá de un sistema de evacuación de aguas, que pur portenta dispondrá de un sistema de evacuación de aguas, que pur portenta dispondrá de un sistema de evacuación de aguas, que pur portenta dispondrá de un sistema de evacuación de servicion de aguas, que pur portenta de aguas, que portenta de ag

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ

ANA LUISA DE GONZALO VIVANCOS

659 081 538

El Colegio Acredita la firma digital de los autores Número Fecha

Condiciones de los componentes

Sistema de formación de pendientes

El sistema de formación de pendientes tendrá una cohesión y estabilidad suficientes frente a las solicitaciones mecánicas y térmicas, y su constitución será adecuada para el recibido o fijación del resto de componentes.

El sistema de formación de pendientes es el elemento que sirve de soporte a la capa de impermeabilización.

El material que constituye el sistema de formación de pendientes será compatible con el material impermeabilizante y con la forma de unión de dicho impermeabilizante a él.

El sistema de formación de pendientes en cubiertas planas tendrá una pendiente hacia los elementos de evacuación de agua incluida dentro de los intervalos que figuran en la tabla 2.9 en función del uso de la cubierta y del tipo de protección.

Tabla 2.9 Pendientes de cubiertas planas

Uso		Protec ción	Pendiente en %
	Peatones	Solado fijo	1-5 (1)
Trans itables	reatones	Solado flotante	1-5
	Vehículos	Capa de rodadura	1-15
No transitables		Grava	1-5
NO transitables		Lámina autoprotegida	1-15
Ajardinadas		Tierra vegetal	1-5

⁽¹⁾ Para rampas no se aplica la limitación de pendiente máxima.

Aislante térmico

El material del aislante térmico tendrá una cohesión y una estabilidad suficiente para proporcionar al sistema la solidez necesaria frente a las solicitaciones mecánicas.

Capa de impermeabilización

Como capa de impermeabilización, existe un material: etileno propileno dieno monómero, que se indica en el proyecto.

Se cumplen estas condiciones para este material:

- 1. Cuando la pendiente de la cubierta sea mayor que 15%, deben utilizarse sistemas fijados mecánicamente.
- Cuando la cubierta no tenga protección, deben utilizarse sistemas adheridos o fijados mecánicamente.

Capa de protección

Existen capas de protección cuyo material será resistente a la intemperie en función de las condiciones ambientales previstas y tendrá un peso suficiente para contrarrestar la succión del viento.

En la capa de protección se usan estos materiales u otros que produzcan el mismo efecto.

- a) cuando la cubierta no sea transitable, grava, solado fijo o flotante, mortero, tejas y otros materiales que conformen una capa pesada y estable;
- b) cuando la cubierta sea transitable para peatones, solado fijo, flotante o capa de rodadura;
- c) cuando la cubierta sea transitable para vehículos, capa de rodadura.

Capa de grava

Se utiliza grava suelta. La grava suelta únicamente se empleará en cubiertas cuya pendiente sea menor que el 5 %.

Solado fijo

El solado fijo tiene estas características.

- El solado fijo puede ser de los materiales siguientes:
 - baldosas recibidas con mortero,
 - capa de mortero,
 - piedra natural recibida con mortero,
 - hormigón, adoquín sobre lecho de arena,
 - mortero filtrante, aglomerado asfáltico
 - u otros materiales de características análogas.

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado.

23/12/2015

- El material que se utilice debe tener una forma y unas dimensiones compatibles con la pendiente.
- Las piezas no deben colocarse a hueso.

Condiciones de los puntos singulares

Cubiertas planas

En las cubiertas planas se respetarán las condiciones de disposición de bandas de refuerzo y de terminación, las de continuidad o discontinuidad, así como cualquier otra que afecte al diseño, relativas al sistema de impermeabilización que se emplee.

Juntas de dilatación

En las cubiertas planas se dispondrán juntas de dilatación de la cubierta y la distancia entre juntas de dilatación contiguas será como máximo 15 m.

Las juntas afectarán a las distintas capas de la cubierta a partir del elemento que sirve de soporte resistente.

En las cubiertas planas existe algún encuentro de las juntas de dilatación con un paramento vertical o una junta estructural.

Se dispondrá la junta de dilatación coincidiendo con ellos.

Los bordes de las juntas de dilatación serán romos, con un ángulo de 45° aproximadamente, y la anchura de la junta será mayor que 3 cm.

En el solado, utilizado como capa de protección se dispondrán juntas de dilatación con estas características:

Las juntas deben afectarán a las piezas, al mortero de agarre y a la capa de asiento del solado y se dispondrán de la siguiente forma:

- a) coincidiendo con las juntas de la cubierta;
- b) en el perímetro exterior e interior de la cubierta y en los encuentros con paramentos verticales y elementos pasantes;
- c) en cuadrícula, situadas a 5 m como máximo en cubiertas no ventiladas y a 7,5 m como máximo en cubiertas ventiladas, de forma que las dimensiones de los paños entre las juntas guarden como máximo la relación 1:1,5.

En las juntas se colocará un sellante dispuesto sobre un relleno introducido en su interior que quedará enrasado con la superficie de la capa de protección de la cubierta.

Encuentro de la cubierta con un paramento vertical

La impermeabilización se prolongará por el paramento vertical hasta una altura de 20 cm como mínimo por encima de la protección de la cubierta (Véase la figura.)

Figura 2.13 Encuentro de la cubierta con un paramento vertical

El encuentro con el paramento se realizará redondeándose con un radio de curvatura de 5 cm aproximadamente o achaflanándose una medida análoga según el sistema de impermeabilización.

Para que el agua de las precipitaciones o la que se deslice por el paramento no se filtre por los remates superiores de la impermeabilización, dichos remates se realizarán de alguna de las formas siguientes o de cualquier otra que produzca el mismo efecto:

- a) mediante una roza de 3 x 3 cm como mínimo en la que debe recibirse la impermeabilización con mortero en bisel formando aproximadamente un ángulo de 30° con la horizontal y redondeándose la arista del paramento;
- b) mediante un retranqueo cuya profundidad con respecto a la superficie externa del paramente vertical debe ser mayor que 5 cm y cuya altura por encima de la protección de la cue transferencia del paramente vertical debe
- mediante un perfil metálico inoxidable provisto de una pestaña a base a un cordón de sellado entre el perfil y el muro. Si en la parte redondeada para evitar que pueda dañarse la lámina.

CLEAR TO REPORT WERE WITH A CION 23/12/2015

THE PORT WENT OF THE STREET OF THE STREET

Autores: Marta Serrano Martinez Ana Luisa de Gonzalo Vivancos

Encuentro de la cubierta con el borde lateral

El encuentro de la cubierta con el borde lateral se realizará como se indica:

Prolongando la impermeabilización 5 cm como mínimo sobre el frente del alero o el paramento.

Encuentro de la cubierta con un sumidero o un canalón

El sumidero o el canalón será una pieza prefabricada, de un material compatible con el tipo de impermeabilización que se utilice y dispondrá de un ala de 10 cm de anchura como mínimo en el borde superior.

El sumidero o el canalón estará provisto de un elemento de protección para retener los sólidos que puedan obturar la bajante. En cubiertas transitables este elemento estará enrasado con la capa de protección y en cubiertas no transitables, este elemento sobresaldrá de la capa de protección.

El elemento que sirve de soporte de la impermeabilización se rebajará alrededor de los sumideros o en todo el perímetro de los canalones (Véase la figura 2.14) lo suficiente para que después de haberse dispuesto el impermeabilizante siga existiendo una pendiente adecuada en el sentido de la evacuación.

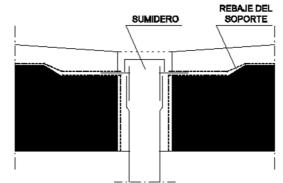


Figura 2.14 Rebaje del soporte alrededor de los sumideros

La impermeabilización se prolongará 10 cm como mínimo por encima de las alas.

La unión del impermeabilizante con el sumidero o el canalón será estanca.

Cuando el sumidero se dispone en la parte horizontal de la cubierta, se situará separado 50 cm como mínimo de los encuentros con los paramentos verticales o con cualquier otro elemento que sobresalga de la cubierta.

El borde superior del sumidero quedará por debajo del nivel de escorrentía de la cubierta.

Encuentro de la cubierta con elementos pasantes

Los elementos pasantes se situarán separados 50 cm como mínimo de los encuentros con los paramentos verticales y de los elementos que sobresalgan de la cubierta.

Se dispondrán elementos de protección prefabricados o realizados in situ, que asciendan por el elemento pasante 20 cm como mínimo por encima de la protección de la cubierta.

Rincones y esquinas

En los rincones y las esquinas se dispondrán elementos de protección prefabricados o realizados in situ hasta una distancia de 10 cm como mínimo desde el vértice formado por los dos planos que conforman el rincón o la esquina y el plano de la cubierta.

Accesos y aberturas

Se realizarán los accesos y las aberturas situados en un paramento vertical disponiéndolos retranqueados respecto del paramento vertical 1 m como mínimo. El suelo hasta el acceso tendrá una pendiente del 10% hacia fuera y se tratará como la cubierta.

Dimensionado

Bombas de achique

Cada una de las bombas de achique de una misma cámara se dimensionará para el caudal total de agua a evacuar.

El volumen de cada cámara de bombeo será como mínimo igual al obtenido de la tabla 3.4.

Autores: Marta Serrano Martinez ANA LUISA DE GONZALO VIVANCOS

659 081 538

Tabla 3.4 Camaras de bombeo		
Caudal de la bomba	Volumen de la cámara	_
en I/s	en l	_
0,15	2,4	
0,31	2,85	
0,46	3,6	
0,61	3,9	
0,76	4,5	
1,15	5,7	
1,53	9,6	
1,91	10,8	
2,3	15	
3,1	20	

Productos de construcción

Características exigibles a los productos

Introducción

El comportamiento de los edificios frente al agua se caracterizará mediante las propiedades hídricas de los productos de construcción que componen sus cerramientos.

Los productos para aislamiento térmico y los que forman la hoja principal de la fachada se definen mediante las siguientes propiedades:

- la succión o absorción al agua por capilaridad a corto plazo por inmersión parcial (Kg/m²,[g/(m².min)]^{0,5} ó g/(cm².min));
- la absorción al agua a largo plazo por inmersión total (g/cm³).

Los productos para la barrera contra el vapor se definirán mediante la resistencia al paso del vapor de agua (MN·s/g ó m2.h.Pa/mg).

Los productos para la impermeabilización se definirán mediante las siguientes propiedades, en función de su uso: (apartado 4.1.1.4)

- a) estanquidad;
- b) resistencia a la penetración de raices;
- envejecimiento artificial por exposición prolongada a la combinación de radiación ultravioleta, elevadas temperaturas y agua;
- d) resistencia a la fluencia (°C);
- estabilidad dimensional (%); e)
- f) envejecimiento térmico (°C);
- g) flexibilidad a bajas temperaturas (°C);
- h) resistencia a la carga estática (kg);
- i) resistencia a la carga dinámica (mm);
- j) alargamiento a la rotura (%);
- k) resistencia a la tracción (N/5cm).

Componentes de la hoja principal de fachadas

Cuando la hoja principal es de ladrillo cerámico, los ladrillos tendrán como máximo una succión de 0,45 g/(cm² min) medida según el ensayo de UNE 67 031:1985.

Construcción

Ejecución

Las obras de construcción del edificio, en relación con esta sección, se legislación aplicable, a las normas de la buena práctica constructiva y a las carruncios de la buena práctica de director de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución de la obra, conforme a lo indicado en el artículo de la ejecución d condiciones se indicarán las condiciones de ejecución de los cerramientos.

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

Fachadas

Condiciones de la hoja principal

En la ejecución de la hoja principal de las fachadas se cumplirán estas condiciones.

- Cuando la hoja principal sea de ladrillo, deben sumergirse en agua brevemente antes de su colocación.
 Cuando se utilicen juntas con resistencia a la filtración alta o moderada, el material constituyente de la hoja debe humedecerse antes de colocarse.
- Deben dejarse enjarjes en todas las hiladas de los encuentros y las esquinas para trabar la fábrica.
- Cuando la hoja principal no esté interrumpida por los pilares, el anclaje de dicha hoja a los pilares debe realizarse de tal forma que no se produzcan agrietamientos en la misma. Cuando se ejecute la hoja principal debe evitarse la adherencia de ésta con los pilares.
- Cuando la hoja principal no esté interrumpida por los forjados el anclaje de dicha hoja a los forjados, debe realizarse de tal forma que no se produzcan agrietamientos en la misma. Cuando se ejecute la hoja principal debe evitarse la adherencia de ésta con los forjados.

Condiciones del revestimiento intermedio

El revestimiento intermedio se dispondrá adherido al elemento que sirve de soporte y se aplicará de manera uniforme sobre éste

Condiciones del aislante térmico

En la ejecución del aislante térmico se cumplirán estas condiciones: (apartado 5.1.3.3)

- Debe colocarse de forma continua y estable.
- Cuando el aislante térmico sea a base de paneles o mantas y no rellene la totalidad del espacio entre las dos hojas de la fachada, el aislante térmico debe disponerse en contacto con la hoja interior y deben utilizarse elementos separadores entre la hoja exterior y el aislante.

Condiciones del revestimiento exterior

El revestimiento exterior se dispondrá adherido o fijado al elemento que sirve de soporte.

Cubiertas

Condiciones de la formación de pendientes

Cuando la formación de pendientes es el elemento que sirve de soporte de la impermeabilización, su superficie será uniforme y limpia.

Condiciones del aislante térmico

El aislante térmico se colocará de forma continua y estable.

Condiciones de la impermeabilización

En la ejecución de la impermeabilización se cumplirán estas condiciones:

- Las láminas deben aplicarse en unas condiciones térmicas ambientales que se encuentren dentro de los márgenes prescritos en las correspondientes especificaciones de aplicación.
- Cuando se interrumpan los trabajos deben protegerse adecuadamente los materiales.
- La impermeabilización debe colocarse en dirección perpendicular a la línea de máxima pendiente.
- Las distintas capas de la impermeabilización deben colocarse en la misma dirección y a cubrejuntas.
- Los solapos deben quedar a favor de la corriente de agua y no deben quedar alineados con los de las hileras contiguas.

Control de la ejecución

El control de la ejecución de las obras se realizará de acuerdo con las especificaciones del proyecto, sus anejos y modificaciones autorizados por el director de obra y las instrucciones del director de la ejecución de la obra, conforme a lo indicado en el artículo 7.3 de la parte I del CTE y demás normativa vigente de aplicación.

Se comprobará que la ejecución de la obra se realiza de acuerdo con los controles y con la frecuencia de los mismos establecida en el pliego de condiciones del proyecto.

Cualquier modificación que pueda introducirse durante la ejecución de la obra ejecutada sin que en ningún caso dejen de cumplirse las condicion Básico.

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: Marta Serrano Martinez Ana Luisa de Gonzalo Vivancos

Control de la obra terminada

En el control se seguirán los criterios indicados en el artículo 7.4 de la parte I del CTE. En esta sección del DB no se prescriben pruebas finales.

Mantenimiento y conservación

Se realizarán las operaciones de mantenimiento que, junto con su periodicidad, se incluyen en la tabla 6.1 y las correcciones pertinentes en el caso de que se detecten defectos.

	Tabla 6.1 Operaciones de mantenimiento			
	Operación			
	Comprobación del correcto funcionamiento de los canales y bajantes de evacuación de los muros parcialmente estancos	1 año (1)		
Muros	Comprobación de que las aberturas de ventilación de la cámara de los muros parcialmente estancos no están obstruidas	1 año		
	Comprobación del estado de la impermeabilización interior	1 año		
	Comprobación del estado de limpieza de la red de drenaje y de evacuación	1 año (2)		
	Limpieza de las arquetas	1 año (2)		
Suelos	Comprobación del estado de las bombas de achique, incluyendo las de reserva, si hubiera sido necesarias su implantación para poder garantizar el drenaje	1 año		
	Comprobación de la posible existencia de filtraciones por fisuras y grietas	1 año		
	Comprobación del estado de conservación del revestimiento: posible aparición de fisuras, desprendimientos, humedades y manchas	3 años		
Fachadas	Comprobación del estado de conservación de los puntos singulares	3 años		
racnadas	Comprobación de la posible existencia de grietas y físuras, así como desplomes u otras deformaciones, en la hoja principal	5 años		
	Comprobación del estado de limpieza de las llagas o de las aberturas de ventilación de la cámara	10 años		
	Limpieza de los elementos de desagüe (sumideros, canalones y rebosaderos) y comprobación de su correcto funcionamiento	1 años		
Cubiertas	Recolocación de la grava	1 años		
	Comprobación del estado de conservación de la protección o tejado	3 años		
	Comprobación del estado de conservación de los puntos singulares	3 años		

⁽²⁾ Debe realizarse cada año al final del verano.

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número Fecha 869 982 - 659 081 538

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez
C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61

_

Exigencia Básica HS 2: Recogida y elevación de residuos

No es de aplicación en este proyecto

1.4.3 Exigencia Básica HS 3: Calidad del aire interior

Este apartado de la norma es de aplicación a edificios de viviendas y a los aparcamientos de edificios de otros usos. Nuestro proyecto no es de un edifico de viviendas por lo tanto la justificación de la calidad del aire interior la realizamos según las condiciones establecidas en el RITE, las cuales se justifican el el DB HE2 incluido en este mismo anexo.

1.4.4 Exigencia Básica HS 4: Suministro de agua

1.4.4.1 Características de la instalación

1.4.4.1.1 1.6.1 - Acometidas

- Instalación de acometida enterrada para abastecimiento de agua, que une la red general de distribución de aqua potable de la urbanización interior con la instalación general de cada edificio, continua en todo su recorrido sin uniones o empalmes intermedios no registrables, formada por tubo de polietileno de alta densidad banda azul (PE-100), PN = 16 atm, colocada sobre cama o lecho de arena de 15 cm de espesor, en el fondo de la zanja previamente excavada; collarín de toma en carga colocado sobre la red general de distribución que sirve de enlace entre la acometida y la red; llave de corte de esfera con mando de cuadradillo colocada mediante unión roscada, situada junto a la edificación, fuera de los límites de la misma, alojada en arqueta prefabricada de polipropileno de 40x40x40 cm, colocada sobre solera de hormigón en masa HM-20/P/20/l de 15 cm de espesor.

1.4.4.1.2 Tubos de alimentación

- Instalación de alimentación de agua potable, enterrada, formada por tubo de polipropileno copolímero random (PP-R), Coestherm "COES", PN=10 atm, colocado sobre cama o lecho de arena de 10 cm de espesor, en el fondo de la zanja previamente excavada, debidamente compactada y nivelada mediante equipo manual con pisón vibrante, relleno lateral compactando hasta los riñones y posterior relleno con la misma arena hasta 10 cm por encima de la generatriz superior de la tubería.

1.4.4.1.3 Instalaciones particulares

- Tubería para instalación interior, colocada superficialmente y fijada al paramento, formada por tubo de polipropileno copolímero random (PP-R).

1.4.4.2 Bases de cálculo

1.4.4.2.1 Redes de distribución

Condiciones mínimas de suministro

Q_{min} A.C.S. Caudal instantáneo mínimo de A.C.S.

	Condiciones mínimas de suministro	o a garanti	zar	en cada punto de co	nsumo	
	Tipo de aparato			O _{min} AF (m³/h)	Q_{min} A.C.S. (m ³ /h)	P _{min} (m.c.a.)
Inodoro co	n fluxor			4.50	-	15
Lavabo con grifo temporizado (agua fría)				0.90	-	15
Urinario con grifo temporizado				0.54	-	15
Fregadero doméstico				0.72	0.360	10
Vertedero				0.72	-	15
Ducha con rociador hidromezclador antivandálico			0.54	0.432	10	
Abreviaturas utilizadas						
$Q_{min}AF$	Caudal instantáneo mínimo de agua fría	Pm	in	Presión mínima		

La presión en cualquier punto de consumo no es superior a 50 m.c.a.

La temperatura de ACS en los puntos de consumo debe estar comprendida en consumo de cons

REGISTRO Y ACREDITACION 23/12/2015 179500/52957 Cólegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

1.4.4.2.2 Tramos

El cálculo se ha realizado con un primer dimensionado seleccionando el tramo más desfavorable de la misma y obteniéndose unos diámetros previos que posteriormente se han comprobado en función de la pérdida de carga obtenida con los mismos, a partir de la siguiente formulación:

Factor de fricción

$$\lambda = 0'25 \cdot \log \Box + \frac{5'74}{\Box \infty}$$

$$\Upsilon \Box \Box / \\
\leq \Box 3'7 \cdot D \operatorname{Re}^{0'9} \Box f$$

siendo:

ε: Rugosidad absoluta

D: Diámetro [mm]

Re: Número de Reynolds

Pérdidas de carga

$$J = f(\text{Re}, \varepsilon_r) \cdot \frac{L}{D} \cdot \frac{v^2}{2g}$$

siendo:

Re: Número de Reynolds

ε_r: Rugosidad relativa

L: Longitud [m]

D: Diámetro

v: Velocidad [m/s]

g: Aceleración de la gravedad [m/s2]

Este dimensionado se ha realizado teniendo en cuenta las peculiaridades de la instalación y los diámetros obtenidos son los mínimos que hacen compatibles el buen funcionamiento y la economía de la misma.

El dimensionado de la red se ha realizado a partir del dimensionado de cada tramo, y para ello se ha partido del circuito más desfavorable que es el que cuenta con la mayor pérdida de presión debida tanto al rozamiento como a su altura geométrica.

El dimensionado de los tramos se ha realizado de acuerdo al procedimiento siguiente:

- el caudal máximo de cada tramo es igual a la suma de los caudales de los puntos de consumo alimentados por el mismo de acuerdo con la tabla que figura en el apartado 'Condiciones mínimas de suministro'.
- establecimiento de los coeficientes de simultaneidad de cada tramo de acuerdo con el criterio seleccionado (UNE 149201):

Tuberías de acometida y de alimentación

$$Q_c = 4.4 \times (Q_l)^{0.27} - 3.41 (l/s)$$

siendo:

Qc: Caudal simultáneo

Qt: Caudal bruto

Montantes e instalación interior

 $Q_c = Q_t$

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha 869 982 - 659 081 538

23/12/2015

siendo:

Qc: Caudal simultáneo

Qt: Caudal bruto

$$Q_c = 4.4 \times (Q_t)^{0.27} - 3.41 (l/s)$$

siendo:

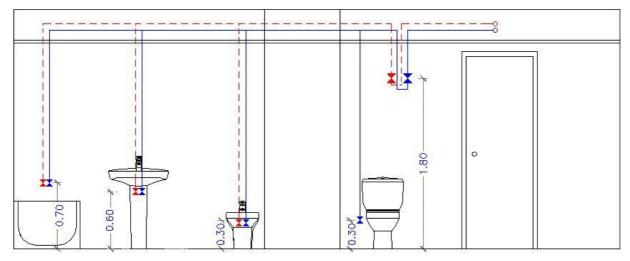
Qc: Caudal simultáneo

Qt: Caudal bruto

- determinación del caudal de cálculo en cada tramo como producto del caudal máximo por el coeficiente de simultaneidad correspondiente.
- elección de una velocidad de cálculo comprendida dentro de los intervalos siguientes:

tuberías metálicas: entre 0.50 y 2.00 m/s.

tuberías termoplásticas y multicapas: entre 0.50 y 3.50 m/s.


- obtención del diámetro correspondiente a cada tramo en función del caudal y de la velocidad.

1.4.4.2.3 Comprobación de la presión

Se ha comprobado que la presión disponible en el punto de consumo más desfavorable supera los valores mínimos indicados en el apartado 'Condiciones mínimas de suministro' y que en todos los puntos de consumo no se supera el valor máximo indicado en el mismo apartado, de acuerdo con lo siguiente:

- se ha determinado la pérdida de presión del circuito sumando las pérdidas de presión total de cada tramo. Las perdidas de carga localizadas se estiman en un 20 % al 30 % de la producida sobre la longitud real del tramo y se evaluan los elementos de la instalación donde es conocida la perdida de carga localizada sin necesidad de estimarla.
- se ha comprobado la suficiencia de la presión disponible: una vez obtenidos los valores de las pérdidas de presión del circuito, se ha comprobado si son sensiblemente iguales a la presión disponible que queda después de descontar a la presión total, la altura geométrica y la residual del punto de consumo más desfavorable.

1.4.4.2.4 Derivaciones a cuartos húmedos y ramales de enlace

Los ramales de enlace a los aparatos domésticos se han dimensionado conforme a lo que se establece en la siguiente tabla. En el resto, se han tenido en cuenta los criterios de suministro dados por las características de cada aparato y han sido dimensionados en consecuencia.

> **REGISTRO Y ACREDITACION** 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Diámetros mínimos de derivaciones a los aparatos					
Aparato o punto de consumo	Diámetro nominal del ramal de enlace				
Aparato o panto de consumo	Tubo de acero (")	Tubo de cobre o plástico (mm)			
Inodoro con fluxor	1 – 1+1/2	25 – 40			
Lavabo con grifo temporizado (agua fría)	1/2	12			
Urinario con grifo temporizado	1/2	12			
Fregadero doméstico	1/2	12			
Vertedero	3/4	20			
Ducha con rociador hidromezclador antivandálico	1/2	12			

Los diámetros de los diferentes tramos de la red de suministro se han dimensionado conforme al procedimiento establecido en el apartado 'Tramos', adoptándose como mínimo los siguientes valores:

Diámetros mínimos de alimentación				
Tramo considerado		Diámetro nominal del tubo de alimentación		
		Cobre o plástico (mm)		
Alimentación a cuarto húmedo privado: baño, aseo, cocina.	3/4	20		
Alimentación a derivación particular: vivienda, apartamento, local comercial	3/4	20		
Columna (montante o descendente)	3/4	20		
Distribuidor principal	1	25		

1.4.4.2.5 Redes de A.C.S.

1.4.4.2.5.1 Redes de impulsión

Para las redes de impulsión o ida de ACS se ha seguido el mismo método de cálculo que para redes de agua fría.

1.4.4.2.5.2 Redes de retorno

Para determinar el caudal que circulará por el circuito de retorno, se podrá estimar que en el grifo más alejado, la pérdida de temperatura será como máximo de 3°C desde la salida del acumulador o intercambiador en su caso.

En cualquier caso no se recircularán menos de 250 l/h. en cada columna, si la instalación responde a este esquema, para poder efectuar un adecuado equilibrado hidráulico.

El caudal de retorno se estima según reglas empíricas de la siguiente forma:

- se considera que recircula el 10% del agua de alimentación, como mínimo. De cualquier forma se considera que el diámetro interior mínimo de la tubería de retorno es de 16 mm.
- los diámetros en función del caudal recirculado se indican en la siguiente tabla:

Relación entre diámetro de tubería y caudal recirculado de ACS				
Diámetro de la tubería (pulgadas)	Caudal recirculado (l/h)			
1/2	140			
3/4	300			
1	600			
1 1/4	1100			
1 1/2	1800			
2	3300			

1 4 4 2 5 3 Aislamiento térmico

El espesor del aislamiento de las conducciones, tanto en la ida como en el retorno, se ha dimensionado de acuerdo a El espesor del aislamiento de las conducciones, tanto on la laciones lo indicado en el 'Reglamento de Instalaciones Térmicas en los Edificiones Ed complementarias (ITE)'.

RIREGISTRIO YIMACIREDIOTASCIONICNIC 28/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

1.4.4.2.5.4 Dilatadores

En los materiales metálicos se podrá aplicar lo especificado en la norma UNE 100 156:1989 y para los materiales termoplásticos lo indicado en la norma UNE ENV 12 108:2002.

En todo tramo recto sin conexiones intermedias con una longitud superior a 25 m se deben adoptar las medidas oportunas para evitar posibles tensiones excesivas de la tubería, motivadas por las contracciones y dilataciones producidas por las variaciones de temperatura. El mejor punto para colocarlos se encuentra equidistante de las derivaciones más próximas en los montantes.

1.4.4.3 Medidas de ahorro y conservacion en el consumo del agua

En referencia a las medidas de ahorro y conservación en el consumo de agua, se estará obligado a cumplir lo establecido en la Ley 6/2006 de 21 de Julio, sobre incremento de las medidas de ahorro y conservación en el consumo de agua en la Comunidad Autonoma de la Region de Murcia. Nuestra actividad esta clasificada como un local de publica concurrencia, por lo tanto habremos de cumplir lo establecido en el Articulo 3 de la norma. Es por ello que las medidas a adoptar en nuestro local serán las siguientes:

- 1. Los grifos de los aparatos sanitarios de uso público dispondrán de temporizadores o de cualquier otro mecanismo similar de cierre automático que dosifique el consumo de agua, limitando las descargas a 1 litro de agua.
- 2. El mecanismo de las duchas incluirá economizadores de chorro o similares o mecanismo reductor de caudal de forma que para una presión de 2,5 Kg/cm2 tengan un caudal máximo de 8 l/min.
- 3. El mecanismo de adicion de la descarga de las cisternas de los inodoros limitara el volumen de descarga a un máximo de 7 litros y dispondrá de la posibilidad de detener la descarga o de un doble sistema de descarga para pequeños volúmenes.
- 4. En todos los puntos de consumo de agua se advertira, mediante un cartel en zona perfectamente visible, sobre la escasez de agua y la necesidad de uso responsable de la misma.

Medidas adoptadas para la prevención de la legionela. 1.4.4.4

Este apartado tiene por objeto establecer reglas y procedimientos que permiten cumplir las exigencias básicas establecidas en el Real Decreto 865/2003 de 4 de Julio por el que se establecen los criterios higienico-sanitarios para la prevención y control de la legionelosis.

En primer lugar, para eliminar la bacteria del sistema de producción y acumulación de A.C.S. se ha previsto que, periódicamente, la instalación pueda preparar el agua a 70°C durante dos horas, tiempo suficiente para la destrucción de la bacteria. Como medida adicional, se ha tomado como temperatura de diseño en la preparación y distribución del A.C.S. un valor de 58 a 60 °C, reduciéndose este valor en los grifos mediante la mezcla con aqua fría.

Para evitar bajas temperaturas en la parte inferior de los depósitos de acumulación, se han previsto la recirculacion, de forma que permitan la igualación de temperaturas en el interior de los depósitos y la red de distribución.

En el caso del sistema de climatización, los filtros de los fancoils se limpiarán periódicamente y se evitará la acumulación de agua en los aparatos dotando a las bandejas de recogida de condensados de la suficiente pendiente para que el agua se evacue rápidamente hacia los desagües.

Se deberá evitar, en lo posible, que la temperatura del agua permanezca entre 20 °C y 45 °C. Para ello, es necesario aislar térmicamente aparatos y tuberías.

Se utilizarán materiales que resistan la acción agresiva del agua y del cloro u otros desinfectantes, con el fin de evitar la formación de productos de la corrosión. Algunos materiales empleados para el sellado de uniones de diferentes partes de un sistema de distribución de agua son particularmente propicios al desarrollo de bacterias y hongos (cueros, maderas y ciertos tipos de gomas, masillas y materiales plásticos), por lo que deberán evitarse.

Otra medida de carácter general es la prevención de zonas de estancamiento de agua en los circuitos abiertos, como tuberías de by-pass, equipos o aparatos en reserva, tramos de tuberías con fondo ciego, etc. Los equipos y aparatos en reserva deberán aislarse del sistema mediante válvulas de corte de cierre hermético y estarán equipados de una válvula de drenaje situada en el punto más bajo.

Igualmente importante es el mantenimiento en seco de las bandejas de recogida de agua de las baterías de refrigeración, que estarán dotadas de fondos con fuertes pendiente (2 % por lo menos) y de tubos de desagüe equipados con sifón de 5 cm de cierre hidráulico, al menos, y conexión abierta a la red de saneamiento. Se tomarán las medidas necesarias para evitar que el sifón quede seco.

Durante la fase de montaje se evitará la posibilidad de entrada de materiales extraños en los circuitos de distribución.

Conductos para el transporte de aire

Existe un riesgo evidente de contaminación de los ambientes a causa de los sistemas de transporte de aire, especialmente en zonas de los sistemas de los siste

La posibilidad de que se produzcan condensaciones que humedezcan multiplicación de la legionela.

Astronesi: epaásitas erannom tarinetz riesgo de ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 619 869 982

El Colegio Acredita la firma digital de los autores Número Fecha - 659 081 538

Las medidas adoptadas de prevención para reducir estos riesgos son las siguientes:

- Se instalarán secciones de filtración de eficacia adecuada al uso del edificio para todo el aire en circulación.
- Se impedirá la formación de condensaciones en el interior de los conductos mediante aplicación de aislamiento térmico, diseñado para las condiciones extremas de proyecto.
- Se utilizarán, preferentemente, conductos de construcción normalizada, con superficie de baja rugosidad hidráulica y fabricados con materiales resistentes a la corrosión, que presenten un menor grado de retención de las partículas y faciliten la limpieza.
- Se prestará especial atención al diseño y montaje de los conductos para reducir, en lo posible, las turbulencias en cambios de dirección o sección, derivaciones, etc. así como al tipo de sección transversal, que son causas de acumulación de suciedad.
- Las redes de conductos deberán disponer de trampillas practicables que permitan su inspección y eventual limpieza por métodos de probada eficacia, con estanquidad igual, por lo menos, a la de la red de conductos. Las trampillas se instalarán en las proximidades de las citadas zonas de turbulencia y además, en los conductos de sistemas de baja velocidad, de la clase B según UNE 100-102, cada 10 m, como máximo, en sus tramos rectos horizontales. A estos efectos, las conexiones a las unidades terminales, cuando sean efectuadas mediante conductos flexibles, podrán considerarse puntos de acceso a la red.

1.4.4.5 Dimensionado

1.4.4.5.1 Acometidas

Tubo de polietileno de alta densidad (PE-100 A), PN=16 atm, según UNE-EN 12201-2

EDIFICIO C.I.F.P.

	Cálculo hidráulico de las acometidas													
Tr	$\label{eq:tramo} \begin{array}{ c c c c c c }\hline \text{Tramo} & L_r & L_t & Q_b & K & Q & h \\ \hline (m) & (m) & (m^3/h) & K & (m^3/h) & (m.c.a.) \\ \hline \end{array}$		Di (mi		D _{com} (mm)	v (m/s)	J (m.c.a.)	P _{ent} (m.c.a.)	P _{sal} (m.c.a.)					
	1-2	0.89	1.03	34.20	0.49	16.81	-0.60	5	1.40	63.00	2.25	0.10	49.50	50.00
	Abreviaturas utilizadas													
L_{r}	Longitud	d medida	sobre p	lanos				Dint	Diám	etro interior				
Lt	Longitud	d total de	e cálculo	(Lr + Leq)				D_{com}	Diám	etro comer	cial			
Qb	Caudal	bruto						V	Velocidad					
Κ	K Coeficiente de simultaneidad							J	Pérdio	da de carg	a del tramo)		
Q Caudal, aplicada simultaneidad (Q _b x K)						Pent	Presió	on de entra	da					
h	Desnive	1						Psal	Presió	on de salida	ı			

EDIFICIO I.E.S.

	Cálculo hidráulico de las acometidas														
-	$\label{eq:tramo} \text{Tramo} \begin{vmatrix} L_r & L_t & Q_b \\ (m) & (m) & (m^3/h) \end{vmatrix} K \begin{vmatrix} Q & h \\ (m^3/h) & (m.c.a.) \end{vmatrix}$			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				P _{sal} (m.c.a.)							
	1-	-2	0.60	0.69	44.10	0.43	18.88	0.30	5	1.40	63.00	2.53	0.08	44.50	44.12
	Abreviaturas utilizadas														
Lr	Lo	ongituc	l medida	sobre p	lanos				Dint	Diám	etro interior				
Lt	Lo	ongituc	l total de	e cálculo	(Lr + Leq)				D_{com}	Diám	etro comer	cial			
Q	o _b C	Caudal	bruto						V	Veloc	cidad				
K Coeficiente de simultaneidad							J	Pérdio	da de carg	a del tramo)				
Q Caudal, aplicada simultaneidad (Q _b x K)						Pent	Presió	n de entra	da						
h	D	esnivel)							P _{sal}	Presió	in de salida	ı			

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

1.4.4.5.2 Tubos de alimentación

Tubo de polipropileno copolímero random (PP-R), PN=10 atm, según UNE-EN ISO 15874-2

EDIFICIO I.E.S.

	Cálculo hidráulico de los tubos de alimentación													
Т	$\label{eq:tramo} \text{Tramo} \begin{array}{ c c c c c c }\hline \text{L}_r & L_t & Q_b & K & Q & h \\ \hline (m) & (m) & (m^3/h) & K & (m^3/h) & (m.c.a.) \\ \hline \end{array}$			D _i		D _{com} (mm)	v (m/s)	J (m.c.a.)	P _{ent} (m.c.a.)	P _{sal} (m.c.a.)				
	2-3	6.79	7.81	44.10	0.43	18.88	3.65	5	1.40	63.00	2.53	0.95	40.12	35.02
	Abreviaturas utilizadas													
Lr	Longitu	d medida	a sobre p	lanos				Dint	Diám	etro interior				
Lt	Longitu	d total de	e cálculo	(Lr + Leq)				D _{com}	Diám	etro comer	cial			
Qı	Cauda	l bruto						V	Velocidad					
K Coeficiente de simultaneidad						J	Pérdi	da de carg	a del tramo)				
Q Caudal, aplicada simultaneidad (Q _b x K)								Pent	Presid	ón de entra	da			
h Desnivel								P _{sal}	Presid	ón de salida	ı			

1.4.4.5.3 Instalaciones particulares

Tubo de polipropileno copolímero random (PP-R), PN=10 atm, según UNE-EN ISO 15874-2

EDIFICIO I.E.S.

	Cálculo hidráulico de las instalaciones particulares												
Tramo	T _{tub}	L _r (m)	L _t (m)	Q _b (m³/h)	K	Q (m³/h)	h (m.c.a.)	D _{int} (mm)	D _{com}	v (m/s)	J (m.c.a.)	P _{ent} (m.c.a.)	P _{sal} (m.c.a.)
3-4	Instalación interior (F)	4.39	5.05	44.10	0.43	18.88	0.00		63.00	2.53	0.61	35.02	34.40
4-5	Instalación interior (F)	7.02	8.07	8.50	0.91	7.70	-3.95	32.60	40.00	2.56	1.76	34.40	36.59
5-6	Instalación interior (C)	5.55	6.38	8.50	0.91	7.70	3.95	32.60	40.00	2.56	1.39	36.59	27.22
6-7			5.46	0.00	26.00	32.00	2.86	2.96	27.22	24.26			
7-8	Instalación interior (C)	0.09	0.11	5.04	1.00	5.04	0.00	26.00	32.00	2.64	0.03	24.26	24.22
8-9	Instalación interior (C)	3.11	3.58	4.61	1.00	4.61	0.00	26.00	32.00	2.41	0.92	24.22	23.30
9-10	Instalación interior (C)	0.64	0.73	4.18	1.00	4.18	0.00	26.00	32.00	2.18	0.16	23.30	23.14
10-11	Instalación interior (C)	6.60	7.59	3.74	1.00	3.74	0.00	20.40	25.00	3.18	4.45	23.14	18.69
11-12	Instalación interior (C)	29.05	33.41	0.72	1.00	0.72	-0.05	16.20	20.00	0.97	2.95	18.69	15.29
12-13	Cuarto húmedo (C)	1.64	1.89	0.72	1.00	0.72	0.00	16.20	20.00	0.97	0.17	15.29	15.13
13-14	Puntal (C)	14.01	16.12	0.37	1.00	0.37	-3.30	16.20	20.00	0.50	0.44	15.13	17.99
	-	-		Ak	revia	turas ut	ilizadas		-		_		
T _{tub}	Tipo de tubería: F (Agua fría), C (A	gua calie	ente)			Dint	Diámet	ro interio	r				
Lr	Longitud medida sobre planos					D _{com}	Diámet	ro come	rcial				
Lt	Longitud total de cálculo (Lr + L _{eq})					V	Velocio	lad					
Qb	Caudal bruto					J	Pérdida	de carg	ja del tra	mo			
K	Coeficiente de simultaneidad	P_{ent}	Presión	de entra	nda								
Q	$Q \qquad \text{Caudal, aplicada simultaneidad } (Q_b \text{ x K}) \qquad \qquad P_{\text{sal}} \qquad \text{Presión de salida}$												
h	h Desnivel												
Instalac	Instalación interior: Llave de abonado (Llave de abonado)												
Punto d	e consumo con mayor caída de p	resión (Fr): Fregad	dero domé	stico								

1.4.4.5.4 Bombas de circulación

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG 23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

	Cálculo hidráulico de las bombas de circulación										
Ref	Descripción	Q _{cal} (m³/h)	P _{cal} (m.c.a.)								
	Electrobomba centrífuga de tres velocidades, con una	0.10	0.54								
	Abreviatura										
Ref	Referencia de la unidad de ocupación a la que pertenece la bomba de circulación	P _{cal}	Presión de cálculo								
Q _{cal}	Caudal de cálculo										

1.4.4.5.5 Aislamiento térmico

Aislamiento térmico de tuberías en instalación interior de A.C.S., colocada superficialmente, para la distribución de fluidos calientes (de +60°C a +100°C), formado por coquilla de espuma elastomérica de 43,5 mm de diámetro interior y 27.0 mm de espesor.

Aislamiento térmico de tuberías en instalación interior de A.C.S., colocada superficialmente, para la distribución de fluidos calientes (de +60°C a +100°C), formado por coquilla de espuma elastomérica de 23,0 mm de diámetro interior y

Aislamiento térmico de tuberías en instalación interior de A.C.S., colocada superficialmente, para la distribución de fluidos calientes (de +60°C a +100°C), formado por coquilla de espuma elastomérica de 36,0 mm de diámetro interior y 22,0 mm de espesor.

Aislamiento térmico de tuberías en instalación interior de A.C.S., colocada superficialmente, para la distribución de fluidos calientes (de +60°C a +100°C), formado por coquilla de espuma elastomérica de 29,0 mm de diámetro interior y 22,0 mm de espesor.

Aislamiento térmico de tuberías en instalación interior de A.C.S., colocada superficialmente, para la distribución de fluidos calientes (de +60°C a +100°C), formado por coquilla de espuma elastomérica de 23,0 mm de diámetro interior y 22.0 mm de espesor.

Aislamiento térmico de tuberías en instalación interior de A.C.S., empotrada en paramento, para la distribución de fluidos calientes (de +40°C a +60°C), formado por coquilla de espuma elastomérica de 23,0 mm de diámetro interior y 10,0 mm de espesor.

Aislamiento térmico de tuberías en instalación interior de A.C.S., empotrada en paramento, para la distribución de fluidos calientes (de +60°C a +100°C), formado por coquilla de espuma elastomérica de 23,0 mm de diámetro interior y 22,0 mm de espesor.

> **REGISTRO Y ACREDITACION** 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

1.4.5 Exigencia Básica HS 5: Evacuación de aguas

Condiciones generales de la evacuación

Los colectores de los edificios deben desaguar preferentemente por gravedad en el pozo o arqueta general que constituye el punto de conexión entre la instalación de evacuación interior y la red de alcantarillado de la urbanizacion, a través de la correspondiente acometida.

Configuraciones de los sistemas de evacuación

Como la red de evacuación de la urbanización general del instituto, solamente dispone de un red común para evacuación de aquas pluviales y fecales, nuestra red de los edificios, será mixta, discurriendo por tuberías comunes las redes de evacuación de pluviales y fecales.

Elementos de la red de evacuación

Cierres hidráulicos

Los cierres hidráulicos pueden ser:

- Sifones individuales, propios de cada aparato. a)
- b) Botes sifonicos, que pueden servir a varios aparatos.
- Sumideros sifonicos c)
- Arquetas sifonicas, situadas en los encuentros de los conductos enterrados de aquas pluviales y residuales.

Redes de evacuación interior

Las redes de pequeña evacuación se han diseñado conforme a los siguientes criterios:

- El trazado de la red sera lo más sencilla posible para conseguir una circulación natural por gravedad.
- Se conectan a las bajantes
- c) La distancia del bote sifonico a la bajante no es mayor de 2,00m.
- d) Las derivaciones que acometen a bote sifonico tienen una longitud igual o menor que 2,5m., con una pendiente comprendida entre el 2 y el 4%.
- Los aparatos dotados de sifón individual deben tener las características siquientes:
 - En fregaderos, lavaderos, los lavabos y los bidés la distancia a la bajante debe ser de 4,00m, como máximo, con pte. Comprendida entre un 2,5 y un 5%
 - En las bañeras y las duchas la pendiente debe ser menor o igual al 10%
 - El desague de los inodoros a las bajantes debe realizarse directamente o mediante un manqueton de acometida de longitud inferior o menor de 1,00m., siempre que no sea posible dar al tubo la pendiente necesaria.
- Debe disponerse un rebosadero en los lavabos, bidés, bañeras y fregaderos
- No deben disponerse desagues enfrentados acometiendo a una tubería común
- Las uniones de los desagues a las bajantes deben tener la mayor inclinación posible, en cualquier caso no debe de ser menor que 45°.
- Cuando sean sifones individuales los ramales de desague de los aparatos sanitarios deben unirse a un tubo de derivación, que desemboquen en la bajante y que tenga la cabecera registrable con tapón

La adjudicación de unidades de desagüe a cada tipo de aparato y los diámetros mínimos de sifones y derivaciones individuales se establecen en la siguiente tabla, en función del uso (privado o público).

Tipo de aparato sanitario	Unidades d	le desagüe	Diámetro mínimo para el	sifón y la derivación individual (mm)
npo de aparato santano	Uso privado	Uso público	Uso privado	Uso público
avabo	1	2	32	40
Bidé	2	3	32	40
Ducha	2	3	40	50
Bañera (con o sin ducha)	3	4	40	50
nodoro con cisterna	4	5	100	100
nodoro con fluxómetro	8	10	100	100
Jrinario con pedestal	-	4	-	50
Jrinario suspendido	-	2	-	40
Jrinario en batería	-	3.5	-	-
regadero doméstico	3	6	40	50
Fregadero industrial	-	2	-	40
avadero	3	_	40	-
Vertedero	-	8	-	100
Fuente para beber	-	0.5	-	25
Sumidero	1	3	40	50
.avavajillas doméstico	3	6	40	50
.avadora doméstica	3	6	40	REGISTRO Y ACREDITACION 23/12/201
Cuarto de baño (Inodoro con cisterna)	7	_ !	100 460 (6) 30	DE DOCUMENTOS PROFESIONALES 179500/5295
Cuarto de baño (Inodoro con fluxómetro)	8	_ !		Colegio Oficial de Arquitectos de Murcia MMP
Cuarto de aseo (Inodoro con cisterna)	6	_	100	-
Cuarto de aseo (Inodoro con fluxómetro)	8	_	100 Autore	es: Marta Serrano Martinez ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Fecha

Los diámetros indicados en la tabla son válidos para ramales individuales cuya longitud no sea superior a 1,5 m.

Bajantes y canalones

Las bajantes deben realizarse sin desviaciones ni retranqueos y con un diámetro uniforme en todo su altura, excepto en el caso de bajantes residuales.

El diámetro no debe disminuir en el sentido de la corriente

El dimensionado de las bajantes se ha realizado de acuerdo con la siguiente tabla, en la que se hace corresponder el número de plantas del edificio con el número máximo de unidades de desagüe y el diámetro que le corresponde a la bajante, siendo el diámetro de la misma constante en toda su altura y considerando también el máximo caudal que puede descargar desde cada ramal en la bajante:

Diámetr o	Máximo número de UDs	, para una altura de bajante de:		a ramal, para una altura de bajante de:
(mm)	Hasta 3 plantas	Más de 3 plantas	Hasta 3 plantas	Más de 3 plantas
50	10	25	6	6
63	19	38	11	9
75	27	53	21	13
90	135	280	70	53
110	360	740	181	134
125	540	1100	280	200
160	1208	2240	1120	400
200	2200	3600	1680	600
250	3800	5600	2500	1000
315	6000	9240	4320	1650

Los diámetros mostrados, obtenidos a partir de la tabla 4.4 (CTE DB HS 5), garantizan una variación de presión en la tubería menor que 250 Pa, así como un caudal tal que la superficie ocupada por el agua no supera un tercio de la sección transversal de la tubería.

Las desviaciones con respecto a la vertical se han dimensionado con igual sección a la bajante donde acometen, debido a que forman ángulos con la vertical inferiores a 45°.

Colectores

Los colectores pueden disponerse colgados o enterrados.

El diámetro se ha calculado a partir de la siguiente tabla, en función del número máximo de unidades de desagüe y de la pendiente:

Diámetro (mm)	Máximo número de %s Pendiente					
, ,	1 %	2 %	4 %			
50	-	20	25			
63	-	24	29			
75	-	38	57			
90	96	130	160			
110	264	321	382			
125	390	480	580			
160	880	1056	1300			
200	1600	1920	2300			
250	2900	3520	4200			
315	5710	6920	8290			
350	8300	10000	12000			

Los diámetros mostrados, obtenidos de la tabla 4.5 (CTE DB HS 5), garantizan que, bajo condiciones de flujo uniforme, la superficie ocupada por el agua no supera la mitad de la sección transversal de la tubería.

Colectores colgados

Las bajantes deben conectarse mediante piezas especiales.

La conexión de una bajante de aguas pluviales al colector en los sistemas mixtos, de Se la gentifica de Asquitactos de MMPG 3m., de la conexión de la bajante más próxima de aguas residuales situada a quas un residuales situada a quas marta serrano martinez

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES **REGISTRO Y ACREDITACION**

23/12/2015 179500/52957

ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

Debe tener una pendiente del 1% como mínimo

No deben acometer en un mismo punto más de dos colectores.

En tramos rectos, acoplamientos tanto en horizontal como vertical, así como en derivaciones, deben disponerse registros constituidos por piezas especiales, los tramos entre ellos no superan los 15m.

Colectores enterrados

Los tubos se disponen en zanjas de dimensiones adecuadas, tal y como se estable en el apartado 5.4.3, situados por debajo de la red de distribución de agua potable.

Deben tener una pendiente del 2% como mínimo.

La acometida de las bajantes y los manguetones a esta red se hará con interposición de una arqueta de pie de bajante, que no debe ser sifonica.

Se dispondrán registros de tal manera que los tramos entre los contiguos no superen los 15m.

Flementos de conexión

En redes enterradas la unión entre las redes vertical y horizontal y en esta, entre sus encuentros y derivaciones, debe realizarse con arquetas dispuestas sobre cimiento de hormigón, con tapa practicable. Solo puede acometer un colector por cada cara de la arqueta, de tal forma que el ángulo formado por el colector y la salida sea mayor que

Redes de ventilación

La ventilación primaria tiene el mismo diámetro que el de la bajante de la que es prolongación, independientemente de la existencia de una columna de ventilación secundaria. Se mantiene así la protección del cierre hidráulico.

Murcia, octubre de 2015

Fdo. Ana Gonzalo Vivancos y Marta Serrano Martínez Arquitectas

> **REGISTRO Y ACREDITACION** 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

1.5 DB-HR: PROTECCION FRENTE AL RUIDO

Las siguientes fichas, correspondientes a la justificación de la exigencia de protección frente al ruido mediante la opción general de cálculo, según el Anejo K.2 del documento CTE DB HR, expresan los valores más desfavorables de aislamiento a ruido aéreo y nivel de ruido de impactos para los recintos de los edificios objeto de proyecto, obtenidos mediante software de cálculo analítico del edificio, conforme a la normativa de aplicación y mediante el análisis geométrico de todos los recintos del edificio.

EDIFICIO I.E.S.

EDIFICIO I.E.	.S.			
Elementos de sep	oaración ve	rticales entre:	·	
Recinto emisor	Recinto receptor	т ро	Características	Aislamiento acústico en proyecto exigido
Cualquier recinto no perteneciente		Elemento base	m (kg/m²)= 195.3	
a la unidad de uso ⁽¹⁾		Tabique de una hoja LM con trasdosado en ambas caras	R _A (dBA)= 70.0	D _{nī,A} = 60 ≥ 50
(si los recintos no comparten		Trasdosado	$\Delta R_A (dBA) = -4.5$	dBA dBA
puertas ni	Protegido	2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particinteriores.	iciones	
Cualquier recinto no perteneciente		Puerta o ventana	-	R _A = 39 ≥ 30
a la unidad de uso ⁽¹⁾		Puerta de madera		RA = dBA < dBA
(si los recintos comparten puertas		Cerramiento		R _A = 66 ≥ 50 dBA
o ventanas)		Tabique de una hoja LM con trasdosado en ambas caras	į	UDA GD.
De instalaciones		Elemento base		
i				- No procede
		Trasdosado		No procede
De actividad		Elemento base		
ĺ		Trasdosado		No procede
Cualquier recinto no		Elemento base	m (kg/m²)= 81.0	
perteneciente a la unidad de		Tabique de una hoja 9cm. con trasdosado en ambas caras		D _{nī,A} = 69 ≥ 45
uso(1) (si los recintos no comparten		Trasdosado		D _{nT,A} = ≥ dBA dBA
comparten puertas ni ventanas)		2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particinteriores.	ticiones $\Delta R_A (dBA) = -4.5$	
Cualquier recinto no perteneciente		Puerta o ventana		No procede
a la unidad de uso ⁽¹⁾⁽²⁾				
(si los recintos comparten puertas		Cerramiento		No procede
o ventanas)	1			1
De instalaciones		Elemento base Tabiquo do dos boias, para royectir.	m (kg/m ²)= 232.2	42 45
į Į		Tasique de dos hojas, para revestir Trasdosado		D _{nT,A} = 62 ≥ 45 dBA dBA
ļ		Irasdosado	$\Delta R_A (dBA) = 0$	
De instalaciones (si los recintos		Puerta o ventana		No procede
comparten puertas		Cerramiento		No procede
o ventanas)				No process
De actividad		Elemento base		
		Trasdosado		No procede
De actividad (si	1	Puerta o ventana		
los recintos comparten			REGISTRO Y ACRI	
puertas o ventanas)		Cerramiento	DE DOCUMENTOS PROI	resionales 179500/52 Yourestos de Murcia ^{MN}
	Ц	into de instalaciones o recinto de actividad	Autores: MARTA SERRANO M	

⁽¹⁾ Siempre que no sea recinto de instalaciones o recinto de actividad

AUTOFES: MARTA SERRANO MARTINEZ
ANA LUISA DE GONZALO VIVANCOS

⁽²⁾ Sólo en edificios de uso residencial o sanitario

Recinto emisor	Recinto receptor	Tipo	Características	s	Aislamiento acúst en proyecto		kigido
Cualquier recinto no perteneciente a	ľ	Forjado FORJADO ENTRE PLANTAS	m (kg/m^2) = RA (dBA) =	601.5 64.0	D _{nT,A} = 63 dB	A ≥	50 dB/
a unidad de uso(1)	Protegido	Suelo flotante	$L_{n,w}$ (dB)= ΔR_A (dBA)=	69.0 0			
	Flotegido	S.M20.PEX40.M30.MC	ΔL _w (dB)=	0			
		Techo suspendido	ΔR _A (dBA)=	0	L' _{nT,w} = 58 d	3 ≤	65 dB
		TO4.PA	ΔL_w (dB)=	0			
De instalaciones		Forjado					
		Suelo flotante			No procede		
		Techo suspendido					
De actividad		Forjado					
		Suelo flotante			No procede		
		Techo suspendido					
Cualquier recinto no perteneciente a		Forjado					
la unidad de uso(1)	Habitable	Suelo flotante			No procede		
		Techo suspendido					
De instalaciones		Forjado					
		Suelo flotante			No procede		
		Techo suspendido					
		Forjado	m (kg/m²)=	563.0			
		forjado sanitario	L _{n,w} (dB)=	67.7			
		Suelo flotante S.M90.MC	ΔL _w (dB)=	0	L' _{nT,w} = 57 di	3 ≤	60 dB
		Techo suspendido	ΔL _w (dB)=	0			
De actividad		Forjado					
		Suelo flotante			No procede		
		Techo suspendido			-		

⁽¹⁾ Siempre que no sea recinto de instalaciones o recinto de actividad

Fac	Fachadas, cubiertas y suelos en contacto con el aire exterior:									
Pui	do exterior	Recinto receptor	Tipo	Aislamiento acústi	со					
Kui	Ruido exterior Recinto receptor		npo	en proyecto	exigido					
			Parte ciega:							
La =	- 60 dRA	Protegido (Estancia)	FACHADA EXTERIOR 30cm.	$D_{2m,nT,Atr} = 37 dB$	BA ≥ 30 dBA					
La -	d = 60 dBA	Frotegido (Estaricia)	Huecos:	- 211,111,Au						
			Ventana de acristalamiento (u = 2.33 kcal/(h m²°c) / factor solar = 0.76)							

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

La tabla siguiente recoge la situación exacta en el edificio de cada recinto receptor, para los valores más desfavorables de aislamiento acústico calculados (D_{nT,A}, L'_{nT,W}, y D_{2m,nT,Atr}), mostrados en las fichas justificativas del cumplimiento de los valores límite de aislamiento acústico impuestos en el Documento Básico CTE DB HR, calculados mediante la opción general.

EDIFICIO I.E.S.

Tino do cálculo	Emisor	Recinto re	ceptor			
Tipo de cálculo	Emisor	Tipo	Planta	Nombre del recinto		
Ruido aéreo interior	Recinto fuera de la unidad de uso	Protegido	PLANTA BAJA	DESPACHO PABELLON (Despacho)		
entre elementos de separación	Recinto fuera de la unidad de uso		PLANTA BAJA	PABELLON (Gimnasio)		
verticales	De instalaciones	Habitable	PLANTA BAJA	VEST. FEM. PABELLON (Aseo de planta)		
Ruido aéreo interior entre elementos de separación horizontales	Recinto fuera de la unidad de uso	Protegido	Planta Piso	AULA 1 (Aula)		
Ruido de impactos en elementos	Recinto fuera de la unidad de uso	Protegido	PLANTA BAJA	AULA DESDOBLE P.BAJA (Aula)		
de separación horizontales	De instalaciones	Habitable	PLANTA BAJA	VEST. FEM. PABELLON (Aseo de planta)		
Ruido aéreo exterior en fachadas, cubiertas y suelos en contacto	con el aire exterior	Protegido	PLANTA BAJA	CANTINA PABELLON (Cafetería)		

Fichas justificativas del método general del tiempo de reverberación y de la absorción acústica

Se presentan a continuación las fichas justificativas del cumplimiento de los valores límite de tiempo de reverberación y de absorción acústica, según el modelo de justificación documental recogido en el Anejo K.3 del documento CTE DB HR, correspondiente al método de cálculo general recogido en el punto 3.2.2 del documento CTE DB HR, basado en los coeficientes de absorción acústica medios de cada paramento.

Para cada recinto del edificio donde se limita el tiempo de reverberación o el área mínima de absorción acústica, se muestra una ficha de cálculo detallada.

EDIFICIO I.E.S.

Tipo de recinto:	AULA (Aula), PLANTA BAJA			,	Volumen,	, V (m³):	199.03
Elemento	Acabado Ár	ea,		ente de a a medio 1000	bsorción 2000	$\alpha_{\rm m}$	Absorción acústica (m²) α _m · S
forjado sanitario	Plaqueta o baldosa cerámica 58	3.71				0.02	1.17
FORJADO ENTRE PLANTAS	MW Lana mineral [0.04 W/[mK]] 57	7.66	İ			0.62	35.75
FACHADA EXTERIOR 30cm.	Guarnecido de yeso. 0.	.00				0.01	0.00
Tabique de una hoja LM con trasdosado en ambas caras	placa de yeso laminado 73	3.51				0.07	5.15
Ventana	Ventana de acristalamiento (u = 2.33 kcal/(h m²°c) / factor solar = 0.76)).91				0.04	1.24
Puerta interior	Puerta de madera 2.	.48				0.08	0.20
Objetos ⁽¹⁾	Tipo		equival A _{O,m} (m 500	1000 iciente d	lia, 2000	ca A _{O,m} ción del aire	A _{O,m} · N
Absorción aire ⁽²⁾ No, V < 250 m ³			500 0.003	1000 0.005	2000 0.01	m_m 0.006	$4 \cdot m_m \cdot V$
A, (m²) Absorción acústica del recinto resultante					$+\sum_{j=1}^{N}A_{O,i}$	$\overline{m_{m,j}} + 4 \cdot \overline{m_m} \cdot V$	43.50
T, (s) Tiempo de reverberación resultante			$T = \frac{0.1}{0.1}$	6 V 4			0.73
	Absorción acústica resultante de la zona con A (m	.		≥		Absorción = 0.2 · V	acústica exigida
	Tiempo de reverberación resulta T (0.68	≤	0.70	Tiempo de exigido	reverberación
(1) Sólo para salas do conforencias do volumen hasta 25	2 2						1

(1) Sólo para salas de conferencias de volumen hasta 350 m³

(2) Sólo para volúmenes superiores a 250 m³

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61 El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

S Área,		ente de a a medio 1000	absorciói 2000	n α _n	0.02 0.62 0.01	Absorción acústica (m²) α _m · S 0.61 17.39 0.00
28.05					0.62	17.39
0.00						<u> </u>
					0.01	0.00
69.83						
					0.07	4.89
17.52					0.04	0.70
2.38					0.08	0.19
	equival	lente me			O,m	$\mathbf{A}_{O,m}\cdot\mathbf{N}$
	ļ	Área do equiva A _{O,m} (m	Área de absorc equivalente me A _{O,m} (m²)	Área de absorción acúst equivalente media, Ao,m (m²)	Área de absorción acústica equivalente media, Ao,m (m²)	Área de absorción acústica equivalente media, A _{O,m} (m²)

Absorción aire ⁽²⁾		Coeficiente de atenuación del aire $m_m \ (m^{-1})$						
		500	1000	2000	$\stackrel{-}{m}_{\scriptscriptstyle m}$	$4 \cdot m_m \cdot V$		
No, V < 250 m ³		0.003	0.005	0.01	0.006			
A, (m²) Absorción acústica del recinto resultante		$A = \sum_{i=1}^{n}$		$+\sum_{j=1}^{N}A_{O,n}$	- 1 1 1 1 1 1 1 1 1 1	23.78		
T, (s) Tiempo de reverberación resultante		$T = \frac{0.1}{2}$	16 V A			0.81		
	Absorción acústica resultante de la zona común A (m²)=		2		Absorción ao = 0.2 · V	cústica exigida		
	Tiempo de reverberación resultante T (s)=	0.69	≤	0.70	Tiempo de re exigido	verberación		

 $^{^{(1)}}$ Sólo para salas de conferencias de volumen hasta 350 m 3

EDIFICIO I.E.S.

Tipo de recinto:	PASO P.BAJA (Zona de circulación), PLA	anta ba	AJA		Volum	en,	V (m³):	310.41		
Elemento	Acabado	S Área, (m²)		ente de a medio 1000	absorci		$lpha_{m}$	Absorción acústīca (m²) α _m · S		
forjado sanitario	Plaqueta o baldosa cerámica	79.07	į				0.02	1.58		
CUBIERTA AULAS	MW Lana mineral [0.04 W/[mK]]	8.68					0.62	5.38		
FORJADO ENTRE PLANTAS	MW Lana mineral [0.04 W/[mK]]	67.99					0.62	42.15		
FACHADA EXTERIOR DE HORMIGON e=45cm.	Guarnecido de yeso.	11.39					0.01	0.11		
Tabique de una hoja LM con trasdosado en ambas caras	placa de yeso laminado	71.67					0.07	5.02		
TABIQUE ENTRE PABELLON Y AULARIOS	Hoja de partición interior de fábrica de bloque de hormigón para revestir.	41.69					0.01	0.42		
Ventana	Ventana de acristalamiento (u = 2.33 kcal/(h m²°c) / factor solar = 0.76)	91.58					0.04	3.66		
Puerta interior	Puerta de madera	12.32					0.08	0.99		
Objetos ⁽¹⁾	Tipo	Área de absorción acústica equivalente media, Tipo A _{O,m} (m²)		equivalente media,		equivalente media,		:a	$\mathbf{A}_{O,m}\cdot\mathbf{N}$	
			500	1000	200	0	A _{O,m}			
Absorción aire ⁽²⁾ Sí, V > 250 m ³		\$!	m _m (n	Colec	pio Ofic	Cial FORR A DE	ACREDITA SÓPRIGIESION de Arquite ANO MARTINI E GÓNZALO V 0.006	tales 17950 ctos de Murci	7/12/2015 00/52957 a MMPG	
		1	TII	7					-	

⁽²⁾ Sólo para volúmenes superiores a 250 m³

A, (m²) Absorción acústica del recinto resultante		$A = \sum_{i=1}^{n}$		$\cdot S_i + \sum_{j=1}^N A_{O,m}$	$-\frac{1}{1}+4\cdot\overline{m_m}\cdot V$	66.76
T, (s) Tiempo de reverberación resultante		$T = \frac{0.1}{1}$	6 V 4			0.74
	Absorción acústica resultante de la zona común A (m²)=	66.76	≥	62.08	Absorción ac	ústica exigida
	Tiempo de reverberación resultante T (s)=		≤		Tiempo de re exigido	verberación

⁽¹⁾ Sólo para salas de conferencias de volumen hasta 350 m³

EDIFICIO I E S

Tipo de recinto:	CANTINA PABELLON (Cafetería), PLANTA I	BAJA		,	√olumen,	V (m³):	286.16
Elemento	Acabado	S Área, (m²)		ente de a a medio 1000	bsorción 2000	$lpha_{ m m}$	Absorción acústica (m^2) $\alpha_m \cdot S$
forjado sanitario	Plaqueta o baldosa cerámica	73.00				0.02	<u>1.</u> 46
FORJADO ENTRE PLANTAS	MW Lana mineral [0.04 W/[mK]]	70.83	İ			0.62	43.92
FACHADA EXTERIOR 30cm.	Guarnecido de yeso.	0.00				0.01	0.00
Tabique de una hoja LM con trasdosado en ambas caras	placa de yeso laminado	60.12				0.07	4.21
Ventana	Ventana de acristalamiento (u = 2.33 kcal/(h m²°c) / factor solar = 0.76)	76.84				0.04	3.07
Puerta interior	Puerta de madera	7.80				0.08	0.62
Objetos ⁽¹⁾	Tipo		equival A _{O,m} (m 500 Coel	1000 ficiente de	lia, 2000	Ao,m Ción del aire	A _{O,m} · N
Absorción aire ⁽²⁾ Sí, V > 250 m ³			m _m (n 500	n ⁻¹) 1000 0.005	2000 0.01	m_m	$4 \cdot m_m \cdot V$
A, (m²)			0.003	0.003	V.01	0.000	0.07
Absorción acústica del recinto resultante				$\sum_{i} \alpha_{m,i} \cdot S_{i}$		$_{n,j}+4\cdot\overline{m_{m}}\cdot V$	60.15
T, (s) Tiempo de reverberación resultante			$T = \frac{0.1}{1}$	6 V A	-		0.76
A	bsorción acústica resultante de la zona c A	omún (m²)=		2		Absorción ao = 0.2 · V	cústica exigid
	Tiempo de reverberación resu		0.76	s	0.90	Tiempo de re	verberación

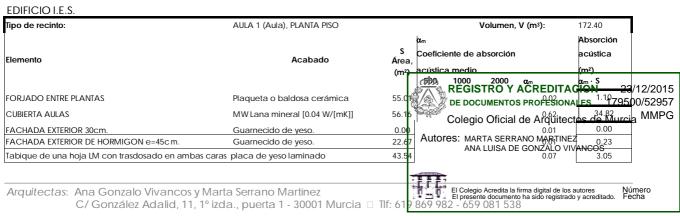
⁽¹⁾ Sólo para salas de conferencias de volumen hasta 350 m³

EDIFICIO I.E.S.

⁽²⁾ Sólo para volúmenes superiores a 250 m³

⁽²⁾ Sólo para volúmenes superiores a 250 m³

Absorción aire ⁽²⁾	Coeficiente de atenuación del aire $m_m \ (m^{-1})$	$4 \cdot m_m \cdot V$
	500 1000 2000 \overline{m}_m	
No, V < 250 m ³	0.003 0.005 0.01 0.006	
A, (m²) Absorción acústica del recinto resultante	$A = \sum_{i=1}^{n} \alpha_{m,i} \cdot S_i + \sum_{j=1}^{N} A_{Om,j} + 4 \cdot \overline{m}_m \cdot V$	19.14
T, (s) Tiempo de reverberación resultante	$T = \frac{0.16 V}{A}$	0.76


Absorción acústica resultante de la zona común				Absorción acústica exigida
A (m²)=	19.14	≥	18.27	= 0.2 · V
Tiempo de reverberación resultante				Tiempo de reverberación
T (s)=		≤		exigido

⁽¹⁾ Sólo para salas de conferencias de volumen hasta 350 m³

Tipo de recinto:	ASEO FEM. CANTINA (Aseo de pla	nta), PL	ANTA BA	UA N	Volumen,	, V (m³):	91.15	
Elemento				α _m Coeficiente de absorción				
		(m²)	acústic 500	a medio 1000	2000	α_{m}	(m²) α _m · S	
forjado sanitario	Plaqueta o baldosa cerámica	23.25				0.02	0.47	
Forjado entre plantas	MW Lana mineral [0.04 W/[mK]]	22.54				0.62	13.97	
Tabique de una hoja LM con trasdosado en ambas caras	placa de yeso laminado	36.43				0.07	2.55	
TABIQUE ENTRE PABELLON Y AULARIOS	Hoja de partición interior de fábrica de bloque de hormigón para revestir.	18.66				0.01	0.19	
Tabique de una hoja 4cm. con trasdosado en ambas caras en el interior de los		10.//				0.07	1. 31	
sectores	placa de yeso laminado	18.66						
Puerta interior	Puerta de madera	1.87				0.08	0.15	
Objetos ⁽¹⁾	Tipo		equival		lia,		$\textbf{A}_{O,m} \cdot \textbf{N}$	
			500	1000	2000	A _{O,m}		
Absorción aire[©] No, V < 250 m³			Coe \overline{m}_m (n 500 $ $ 0.003		e atenua 2000 0.01	ación del aire $-m_m$	$4 \cdot m_m \cdot V$	
A, (m²)			n		N	=		
			$A = \sum_{i=1}^{n}$	$\sum \alpha_{m,i} \cdot S_i$	$+\sum A_{O,s}$	$m_{n,j} + 4 \cdot m_m \cdot V$	18.63	
Absorbién acrietica dal recinto recultanto T, (s)			$T = \frac{0.1}{1}$	6 V		·		
Tiempo de reverberación resultante			1 =	A			0.78	
Abs	sorción acústica resultante de la zona c	omún:				Absorción a exigida	cústica	
	Į.	A (m²)=	18.63	≥	18.23	= 0.2 · V		
	Tiempo de reverberación resu					Tiempo de r		

⁽¹⁾ Sólo para salas de conferencias de volumen hasta 350 m³

⁽²⁾ Sólo para volúmenes superiores a 250 m³

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

⁽²⁾ Sólo para volúmenes superiores a 250 m³

Ventana	Ventana de acristalamiento (u = 2.33 kcal/(h m²°c) / factor solar = 0.76)	26.10	0.04	1.04
Puerta interior	Puerta de madera	2.48	0.08	0.20
Objetos ⁽¹⁾	Тіро		Área de absorción acústica equivalente media, A _{O,m} (m²) 500 1000 2000 A _{O,m}	A _{O,m} · N

Absorción aire ⁽²⁾		Coe \overline{m}_m (n		e atenua	ción del aire	$4 \cdot m_m \cdot V$
		500	1000	2000	\overline{m}_m	
No, V < 250 m ³		0.003	0.005	0.01	0.006	
A, (m²)		, n	7	N N		
Absorción acústica del recinto resultante		$A = \sum_{i=1}^{n}$		$+\sum_{j=1}A_{O,n}$	$m_{m,j} + 4 \cdot \overline{m_m} \cdot V$	40.43
Т, (s)		$T = \frac{0.1}{1}$.6 <u>V</u>			0.70
Tiempo de reverberación resultante			A			0.68
	Absorción acústica resultante de la zona común				Absorción a	cústica exigida
	A (m²)=		≥		= 0.2 · V	
_	Tiempo de reverberación resultante				Tiempo de r	everberación
	T (s)=	0.68	≤	0.70	exigido	

⁽¹⁾ Sólo para salas de conferencias de volumen hasta 350 m³

Tipo de recinto:	AULA 2 (Aula), PLANTA PISO				Volumen	, V (m³):	174.40
Elemento	S Acabado Áre	s (a _m Coeficie	ente de a	absorción	ı	Absorción acústica
	(m	1²) ⁸	acústica 500	medio 1000	2000	αm	(m²) α _m · S
FORJADO ENTRE PLANTAS	Plaqueta o baldosa cerámica 52.	.93				0.02	1.06
CUBIERTA AULAS	MW Lana mineral [0.04 W/[mK]] 56.	.81				0.62	35.22
FACHADA EXTERIOR 30cm.	Guarnecido de yeso. 0.0	00				0.01	0.00
Tabique de una hoja LM con trasdosado en ambas caras	placa de yeso laminado 66.	.48				0.07	4.65
Ventana	Ventana de acristalamiento (u = 2.33 kcal/(h $m^{2\circ}$ c) / factor solar = 0.76)	.59				0.04	1.06
Puerta interior	Puerta de madera 2.4	48				0.08	0.20
Objetos ⁽¹⁾	Тіро	•		ente med	ón acústi dia, 2000	ca A _{O,m}	$\mathbf{A}_{\mathrm{O,m}}\cdot\mathbf{N}$
Absorción aire ⁽²⁾			Coefi $\overline{m_m}$ $(m$		e atenua	ción del aire	$4 \cdot m_m \cdot V$
			500	1000	2000	\overline{m}_m	
No, $V < 250 \text{ m}^3$		İ	0.003	0.005	0.01	0.006	·
A, (m²) Absorción acústica del recinto resultante		·	$A = \sum_{i=1}^{n}$	$\alpha_{m,i} \cdot S_i$	$+\sum_{j=1}^{N}A_{O,i}$	$m_{m,j} + 4 \cdot \overline{m_m} \cdot V$	42.20
T, (s)			$T = \frac{0.16}{0.16}$	<u> 6 V</u>			
Tiempo de reverberación resultante			I = A	1			0.66
А	bsorción acústica resultante de la zona com	nún				Absorción a	cústica exigid
	A (m ²	²)=		≥		= 0.2 · V	
	Tiempo de reverberación resultar T (s		<u>an</u>	\$FGIS	т₽₫⁰∨	Tiempo de N A€REDITA	cion 2
(1) Sólo para salas de conferencias de volumen hasta 350		8	16			S PROFESION	

(2) Sólo para volúmenes superiores a 250 m³

/12/2015

- 00/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

⁽²⁾ Sólo para volúmenes superiores a 250 m³

Tipo de recinto:	AULA 3 (Aula), PLANTA PISO			,	Volumen	V (m³):	174.27
Elemento	Acabado	S Área,	α _m Coefici	ente de a	ıbsorción		Absorción acústica
	(acústic 500	a medio 1000	2000	α_{m}	(m²) α _m · S
FORJADO ENTRE PLANTAS	Plaqueta o baldosa cerámica	53.02	İ			0.02	1.06
CUBIERTA AULAS	MW Lana mineral [0.04 W/[mK]]	56.77				0.62	35.20
FACHADA EXTERIOR 30cm.	Guarnecido de yeso.	0.00				0.01	0.00
Tabique de una hoja LM con trasdosado en ambas caras	placa de yeso laminado	66.44				0.07	4.65
Ventana	Ventana de acristalamiento (u = 2.33 kcal/(h m²°c) / factor solar = 0.76)	26.77				0.04	1.07
Puerta interior	Puerta de madera	2.48				0.08	0.20
Objetos ⁽¹⁾	Тіро		equiva A _{O,m} (m 500	1000	dia, 2000	ca A _{O,m} ción del aire	A _{O,m} · N
Absorción aire ⁽²⁾ No, V < 250 m ³			$m_{\overline{m}}$ (no.003)		2000	$-m_m$	$4 \cdot \overline{m_m} \cdot V$
A, (m²)			n		N		
Absorción acústica del recinto resultante			$A = \sum_{i=1}^{n}$	$\sum_{i} \alpha_{m,i} \cdot S_{i}$	$+\sum_{j=1}A_{O,i}$	$m_{m,j} + 4 \cdot \overline{m_m} \cdot V$	42.18
T, (s)			$T = \frac{0.1}{1}$	6 V			0.66
Tiempo de reverberación resultante				A			0.00
	Absorción acústica resultante de la zona c A	común (m²)=		≥		Absorción ao = 0.2 · V	cústica exigida
	Tiempo de reverberación resu		0.66	≤	0.70	Tiempo de re exigido	verberación

⁽¹⁾ Sólo para salas de conferencias de volumen hasta 350 m³

EDIFICIO I.E.S.

Tipo de recinto:	AULA DESDOBLE PPISO (Aula), PLANTA I	PISO		,	Volumen,	V (m³):	92.69	
Elemento	Acabado	S Área, (m²)		ente de a a medio 1000	bsorción 2000	α_{m}	Absorción acústica (m²) α _m · S	
FORJADO ENTRE PLANTAS	Plaqueta o baldosa cerámica	27.71	İ			0.02	0.55	
CUBIERTA AULAS	MW Lana mineral [0.04 W/[mK]]	30.19	İ			0.62	18.72	
FACHADA EXTERIOR 30cm.	Guarnecido de yeso.	0.00				0.01	0.00	
Tabique de una hoja LM con trasdosado en ambas caras	placa de yeso laminado	55.44				0.07	3.88	
Ventana	Ventana de acristalamiento (u = 2.33 kcal/(h m²°c) / factor solar = 0.76)	14.29				0.04	0.57	
Puerta interior	Puerta de madera	2.48				0.08	0.20	
Objetos ⁽¹⁾	Tipo			e absorcio ente med ²) 1000		ca A _{O,m}	A _{O,m} · N	
Absorción aire ⁽²⁾			Coef $m_{\overline{m}}$ ($m_{\overline{m}}$ 500		e atenua 2000	ción del aire $egin{array}{c} - \\ m_m \end{array}$	$4 \cdot \overline{m_m} \cdot V$	
No, V < 250 m ³		_	0.003	0.005	0.01	0.006		
A, (m²)		ď		REGIS	TŘO Y	ACREDITA	ACION 23	/12/2015 10/52957
Absorción acústica del recinto resultante		Q	Show of I		i = 1			
T, (s)			T = 0.1	&jølegio	Oficial	de Arquite	ctos de Murci	a www
, , ,							0.62	

⁽²⁾ Sólo para volúmenes superiores a 250 m³

Absorción acústica resultante de la zona común	Absorción acústica resultante de la zona común					
A (m²)=		≥		= 0.2 · V		
Tiempo de reverberación resultante				Tiempo de reverberación		
T (s)=	0.62	≤	0.70	exigido		

⁽¹⁾ Sólo para salas de conferencias de volumen hasta 350 m³

Tipo de recinto:	0		Volumen,	V (m³):	407.46		
Elemento	o Acabado Á						Absorción acústica (m^2) $\alpha_m \cdot S$
FORJADO ENTRE PLANTAS	Plaqueta o baldosa cerámica	128.63				0.02	2.57
CUBIERTA AULAS	MW Lana mineral [0.04 W/[mK]]	132.72				0.62	82.29
FACHADA EXTERIOR DE HORMIGON e=45cm.	Guarnecido de yeso.	21.96				0.01	0.22
FACHADA EXTERIOR 30cm.	Guarnecido de yeso.	0.00				0.01	0.00
Tabique de una hoja LM con trasdosado en ambas caras	placa de yeso laminado	111.06				0.07	7.77
TABIQUE ENTRE PABELLON Y AULARIOS	Hoja de partición interior de fábrica de bloque de hormigón para revestir.	107.14				0.01	1.07
Ventana	Ventana de acristalamiento (u = 2.33 kcal/(h m²°c) / factor solar = 0.76)	54.62				0.04	2.18
Puerta interior	Puerta de madera	17.38				0.08	1.39
Objetos ⁽¹⁾	Tipo		Área de equivale A _{O,m} (m ² 500	ente med	on acústic ia, 2000	a A _{O,m}	A _{O,m} · N
Absorción aire ⁽²⁾			Coefi — — — — — — — — — — — — 500		e atenuac	ción del aire	$4\cdot\overline{m}_m\cdot V$
						m_m	0.70
Sí, V > 250 m ³			0.003	0.005	0.01	0.006	9.78
A, (m²) Absorción acústica del recinto resultante			$A = \sum_{i=1}^{n}$	$\alpha_{m,i} \cdot S_i$ +	$-\sum_{j=1}^{N} A_{O,m,j}$	$+4 \cdot m_m \cdot V$	107.28
T, (s) Tiempo de reverberación resultante			$T = \frac{0.16}{A}$				0.61
A	bsorción acústica resultante de la zona		107.28	`	81.49	Absorción a	cústica exigida
	Tiempo de reverberación re	• •	107.20	_	01.47	-	everberación
		T (s)=		≤		exigido	

⁽¹⁾ Sólo para salas de conferencias de volumen hasta 350 m³

Murcia, octubre de 2015

Fdo. Ana Gonzalo Vivancos y Marta Serrano Martínez Arquitectas

> REGISTRO Y ACREDITACION
>
> DE DOCUMENTOS PROFESIONALES
>
> 179500/52957
>
> Arquitectos de Murcia MMPG 23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61

869 982 - 659 081 538

⁽²⁾ Sólo para volúmenes superiores a 250 m³

⁽²⁾ Sólo para volúmenes superiores a 250 m³

1.6 **DB-HE: AHORRO DE ENERGIA**

1.6.1 HE 1 Limitación de demanda energética

Fichas justificativas del cumplimiento del DB HE 1 por la opción simplificada: Limitación de demanda energética

Las siguientes fichas corresponden al modelo de justificación del documento DB HE 1 mediante la opción simplificada, recogido en el Apéndice H de dicho documento, y expresan las transmitancias térmicas medias y máximas alcanzadas, así como los valores relativos al cálculo de condensaciones para los paramentos del edificio que forman parte de la envolvente térmica del mismo.

Ficha 1: Cálculo de los parámetros característicos medios (EDIFICIO I.E.S.)

Z	ONA CLIMÁTICA B3 Zona de baja carga interna		∐ Zo	na de alt	a carga interna
M	uros (U _{Mm}) y (U _{Im})				
Ιij	pos	A (m²)	U (W/m²K)	A · U (W/K)	Resultados
	FACHADA EXTERIOR DE HORMIGON e=45cm.	37.36	0.51	19.14	
	Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores.	7.48	0.56	4.21	
	Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.74)	9.12	0.42	3.80	
V	Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.24)	9.22	0.14	1.25	$\Sigma A = 252.88 \text{ m}^2$
	FACHADA EXTERIOR 30cm.	1.21	0.48	0.58	$\sum A \cdot U = 122.61 \text{ W/V}$
	Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.55)	11.09	0.31	3.44	$U_{Mm} = \sum A \cdot U / \sum A = 0.48 \text{ W/m}^2$
	FACHADA PABELLON	170.55	0.51	87.38	
	Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.73)	6.84	0.41	2.81	
	FACHADA EXTERIOR 30cm.	34.05	0.48	16.30	
	Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores.	7.99	0.56	4.50	

oos	A (m²)	U (W/m²K)	A · U (W/K)	Resultados
Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.74)	7.12	0.42	2.97	
FACHADA EXTERIOR DE HORMIGON e=45cm.	14.94	0.51	7.65	$\Sigma A = 152.52 \text{ m}^2$
TABIQUE ENTRE PABELLON Y AULARIOS - Sistema "KNAUF" de trasdosado directo, de placas de yeso laminado con aislamiento incorporado, en particiones interiores. (b = 0.24)	8.01	0.07	0.58	$\Sigma A \cdot U = 49.09 \text{ W/K}$
Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.44)	29.53	0.25	7.32	$U_{Mm} = \sum A \cdot U / \sum A = 0.32 \text{ W/m}^2\text{K}$
TABIQUE ENTRE PABELLON Y AULARIOS - Sistema "KNAUF" de trasdosado directo, de placas de yeso laminado con aislamiento incorporado, en particiones interiores. (b = 0.44)	1.00	0.13	0.13	
TABIQUE ENTRE PABELLON Y AULARIOS - Sistema "KNAUF" de trasdosado directo, de placas de yeso laminado con aislamiento incorporado, en particiones interiores. (b = 0.55)	44.12	0.16	7.28	
Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.73)	5.76	0.41	2.37 cm	CISTRO V ACREDITACION 23/12/2
Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.44)	34.96	0.25	DE	DOCUMENTOS PROFESIONALES 179500/52 Legio Oficial de Arquitectos de Murcia MM
Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.24)	8.01	0.14		MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS
FACHADA EXTERIOR DE HORMIGON e=45cm.	12.77	0.51	6.54	$\Sigma A = 405.94 \text{ m}^2$

C/ González Adalid, 11, 1° izda., puerta 1 - 30001 Murcia

| Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores El presente documento ha sido registrado y acreditado. | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | Número Fecha | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 538 | Time digital de los autores | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 | Time digital de los autores | 1 - 30001 Murcia | Tif: 619 | 869 982 - 659 081 | Tif: 619 | 7 - 30001 Murcia | Tif: 619 | 7 - 30001 Murcia | Tif: 619 | 7 - 30001 Murcia | Tif: 619 | 7 - 3000 M Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

. —		1			
	Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores.	11.68	0.56	6.58	∑A · U = 189.04 W/K
0	Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.55)	40.84	0.31	12.65	$U_{Mm} = \sum A \cdot U / \sum A = 0.47 \text{ W/m}^2\text{K}$
	Tabique de dos hojas, para revestir (b = 0.97)	25.17	0.55	13.90	
	FACHADA PABELLON	272.52	0.51	139.62	
	Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores.	22.68	0.56	12.78	
S	Tabique de una hoja LM con trasdosado en ambas caras - 2xSistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores. (b = 0.44)	11.09	0.25	2.75	$\Sigma A = 213.61 \text{ m}^2$
	FACHADA EXTERIOR DE HORMIGON e=45cm.	103.39	0.51	52.96	$\Sigma A \cdot U = 107.65 \text{ W/K}$
	FACHADA PABELLON	76.46	0.51	39.17	$U_{Mm} = \sum A \cdot U / \sum A = 0.50 \text{ W/m}^2 \text{K}$

Suelos (Usm)				
Tipos	A (m²)	U (W/m²K)	A·U (W/K)	Resultados
forjado sanitario - S.M20.PEX40.M30.MC (B' = 7.7 m)	428.47	0.50	215.24	
forjado sanitario - S.M20.PEX40.M30.WD (B' = 7.7 m)	8.43	0.49	4.13	
solera pabellon - S.M20.PEX40.M30.WD (B' = 12.4 m)	637.36	0.29	186.07	$\Sigma A = 1123.77 \text{ m}^2$
Enl15 - FORJADO ENTRE PLANTAS - S.M20.MW40.M30.MC (b = 0.24)	3.74	0.17	0.62	$\Sigma A \cdot U = 420.93 \text{ W/K}$
T.C50.PES - FORJADO ENTRE PLANTAS - S.M20.MW40.M30.MC (b = 0.44)	21.00	0.26	5.42	$U_{Sm} = \sum A \cdot U / \sum A = 0.37 \text{ W/m}^2\text{K}$
Enl15 - FORJADO ENTRE PLANTAS - S.M20.MW40.M30.MC (b = 0.55)	24.78	0.38	9.45	

Cubiertas y lucernarios (U _{Cm} , F _{Lm})	ubiertas y lucernarios (U _{Cm} , F _{Lm})											
Tipos	A (m²)	U (W/m²K)	A · U (W/K)	Resultados								
T04.PA - CUBIERTA AULAS	362.91	0.41	150.01									
T04.PA - FORJADO ENTRE PLANTAS	0.74	0.77	0.57									
T.C50.PES - CUBIERTA VESTUARIOS	105.84	0.44	46.81	$\Sigma A = 1122.65 \text{ m}^2$								
CUBIERTA VESTUARIOS	8.43	0.51	4.30	$\Sigma A \cdot U = 385.54 \text{ W/K}$								
PANEL SANDWICH	629.51	0.28	175.44	$U_{Cm} = \sum A \cdot U / \sum A = 0.34 \text{ W/m}^2\text{K}$								
T.C50.PES - CUBIERTA AULAS	15.21	0.55	8.41									

Н	Huecos (U _{Hm} , F _{Hm})								
Tipos		A (m²)	U (W/m²K)	A · U (W/K)	Resultados				
	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	7.11	2.76	19.62	$\Sigma A = 46.30 \text{ m}^2$				
N	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	31.43	2.72	85.50	$\sum A \cdot U = 126.45 \text{ W/K}$				
	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	7.76	2.75	21.33	$U_{Hm} = \sum A \cdot U / \sum A = 2.73 \text{ W/m}^2\text{K}$				

Ti	pos	A (m²)	U	F	A · U	A · F (m²)	Resultados
	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	, ,			286.01	78.57	
	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	5.60		0.73		4.09	$\Sigma A = 262.20 \text{ m}^2$
	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	63.29	2.73	0.74	172.77	46.83	∑A · U = 715.61 W/K
E	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	77.15	2.72	0.75	209.85	57.86	$\sum A \cdot F = 195.64 \text{ m}^2$
	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	7.45	2.75	0.73	20.49	5.44	$U_{Hm} = \sum A \cdot U / \sum A = 2.73 \text{ W/n}^2\text{K}$
	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	3.94	2.78	0.72	10.96	2.84	$F_{Hm} = \sum A \cdot F / \sum A = 0.75$
	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	21.76	2.73	0.75	59.39	16.32	$\Sigma A = 21.76 \text{ m}^2$
							$\sum A \cdot U = 59.39 \text{ W/K}$
c							$\Sigma A \cdot F = 16.32 \text{ m}^2$
							$U_{Hm} = \sum A \cdot U / \sum A = 2.73 \text{ W/m}^2 \text{K}$
						ന്ന	$F_{Hm} = \overline{\sum} \hat{A} \cdot F / \overline{\sum} \hat{A} = 0.75$
	Acristalamiento (U = 2.33 kcal/(h m ² °C) / Factor solar = 0.76)	52.72	2.72	0.75	143.39	22 A Sh	REGISTRO Y ACREDITACIÓN 23/12 DE DOCUMENTOS PROPESIONALES ^{M2} 179500,
	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	3.20	2.86	0.27	9.15		olegio Oficial de Arquitectos de Murcia
S	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	7.85	2.75	0.60	21.58		S: MARTA SERRANO MARTINEZ
	Acristalamiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	18.10	2.74	0.61	49.61	11.04	UANALDIAA DEGONAALQVIVANO ORIA
							$F_{Hm} = \sum A \cdot F / \sum A = 0.69$

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

TIf: 619

11 El Colegio Acredita la firma digital de los autores
El presente documento ha sido registrado y acreditado.

Número
Fecha

9 869 982 - 659 081 538

Ficha 2: Conformidad. Demanda energética (EDIFICIO I.E.S.)

ZONA CLIMÁTICA B3	Zona de baja carga interna	Zona de alta carga interna	X

Cerramientos y particiones interiores de la envolvente térmica	U _{máx(proyecto)} ⁽¹⁾ U _{máx} ⁽²⁾
Muros de fachada	$0.51 \text{ W/m}^2\text{K} \leq 1.07 \text{ W/m}^2\text{K}$
Primer metro del perímetro de suelos apoyados y muros en contacto con el terreno	$0.64 \text{ W/m}^2\text{K} \le 1.07 \text{ W/m}^2\text{K}$
Particiones interiores en contacto con espacios no habitables	$0.56 \text{ W/m}^2\text{K} \le 1.07 \text{ W/m}^2\text{K}$
Suelos	$0.50 \text{ W/m}^2\text{K} \leq 0.68 \text{ W/m}^2\text{K}$
Cubiertas	$0.55 \text{ W/m}^2\text{K} \leq 0.59 \text{ W/m}^2\text{K}$
Vidrios y marcos de huecos y lucernarios	$2.86 \text{ W/m}^2\text{K} \leq 5.70 \text{ W/m}^2\text{K}$
Medianerías	≤ 1.07 W/m²K
Particiones interiores (edificios de viviendas) ⁽³⁾	≤ 1.20 W/m²K

Murc	os de fachada		Huecos				
	U _{Mm} ⁽⁴⁾	U _{Mlim} (5)	U _{Hm} (4)	U _{Hlim} (5)	F _{Hm} (4)	F _{Hlim} (5)	
N	0.48 W/m ² K	≤ 0.82 W/m²k	2.73 W/m²K	≤ 4.70 W/m²k			
Е	0.32 W/m ² K	≤ 0.82 W/m²k	2.73 W/m ² K	≤ 3.70 W/m²k	(0.32 ≤	0.33
Ο	0.47 W/m ² K	≤ 0.82 W/m²k	2.73 W/m ² K	\leq 5.70 W/m ² k	(≤	_
S	0.50 W/m ² K	≤ 0.82 W/m²k	2.73 W/m ² K	≤ 5.70 W/m²k	(≤	
SE		\leq 0.82 W/m ² k		\leq 5.70 W/m ² k		≤	
SO		≤ 0.82 W/m²k		≤ 5.70 W/m²k		≤	

Cerr. cont	tacto terreno	Suelos		Cubiertas y luce	rnarios	Lucernarios		
U _{Tm} (4)	U _{Mlim} (5)	U _{Sm} (4)	U _{Slim} (5)	U _{Cm} (4)	U _{Clim} (5)	F _{Lm} (4)	F	Llim ⁽⁵⁾
	≤ 0.82 W/m²K	0.37 W/m ² K	≤ 0.52 W/m²K	0.34 W/m²K ≤	0.45 W/m ² K		≤	0.30

⁽¹⁾ Umáx(proyecto) corresponde al mayor valor de la transmitancia de los cerramientos o particiones interiores indicados en el proyecto.

⁽⁵⁾ Valores límite de los parámetros característicos medios definidos en la tabla 2.2.

Flora a a	C. supe	C. superficiales C. intersticiales								
lipos lipos	$f_{Rsi} \ge f_{Rsm}$	in	$P_n \leq P_{sat,n}$	Capa 1	Capa 2	Capa 3	Capa 4	Capa 5	Capa 6	Capa 7
de placas de yeso laminado, en particiones nteriores Tabique de una hoja LM con rasdosado en ambas caras - Sistema "KNAUF" de trasdosado autoportante, de placas de yeso aminado, en particiones interiores.	f _{Rsmin}	0.37	P _{sat,n}	1346.79	1712.24	1763.30	2224.50	2239.21		
OA DA CURIERTA AULAG	f_{Rsi}	0.89	Pn	Elemento exento de comprobación (punto 4, apartad						ırtado
04.PA - CUBIERTA AULAS	f_{Rsmin}	0.37	P _{sat,n}	3.2.3.2, CTE DB HE 1)						
	f_{Rsi}	0.82	Pn	Elemento exento de comprobación (punto 4, apartado						
CUBIERTA AULAS	f_{Rsmin}	0.37	P _{sat,n}	3.2.3.2, CTE DB HE 1)						
ruente térmico en esquina saliente de Lerramiento	f _{Rsi}	0.81	Pn							
	f _{Rsmin}	0.37	P _{sat,n}							
uente térmico en esquina entrante de	f _{Rsi}	0.89	Pn							
erramiento	f _{Rsmin}	0.37	P _{sat,n}		_					
	t	0.69	Pn			<u> </u>	EGISTR	O V ACD	EDITACI	DN 23
uente térmico entre cerramiento y cubierta	f _{Rsmin}	0.09	P _{sat,n}			100 6	E DOCUME			
	f _{Rsi}	0.73	Pn			C	olegio Of	icial de A	rquitectos	de Murci
uente térmico entre cerramiento y solera	f _{Rsmin}	0.73	P _{sat.n}				S: MARTA S			
							ANA LUI	SA DE GON	ZALO VIVAN	COS
	f_{Rsi}	0.72	P _n							

⁽²⁾ U_{máx} corresponde a la transmitancia térmica máxima definida en la tabla 2.1 para cada tipo de cerramiento o partición interior.

⁽³⁾ En edificios de viviendas, U_{máx(proyecto)} de particiones interiores que limiten unidades de uso con un sistema de calefacción previsto desde proyecto con las zonas comunes no calefactadas.

⁽⁴⁾ Parámetros característicos medios obtenidos en la ficha 1.

Puente térmico entre cerramiento y forjado	f _{Rsmin}	0.37	P _{sat,n}				
	f_{Rsi}	0.61	Pn				
Puente térmico entre cerramiento y voladizo	f _{Rsmin}	0.37	P _{sat,n}				

Ficha 3: Conformidad. Condensaciones (EDIFICIO I.E.S.)

Cerramientos, particiones interiores,	ouentes t	érmico	s								
Tipos	C. super	ficiales	C. interst	iciales							
Tipos	$f_{Rsi} \geq f_{Rsmi}$	n	$P_n \leq P_{sat,n}$	Capa 1	Capa 2	Capa 3	Capa 4	Capa 5	Capa 6	Capa 7	
	f_{Rsi}	0.88	Pn	936.97	993.32	1238.29	1282.38	1285.32			
FACHADA EXTERIOR 30cm.	f _{Rsmin}	0.37	P _{sat,n}	1312.45	1419.26	2144.10	2242.62	2253.66			
Sistema "KNAUF" de trasdosado autoportante,	f_{Rsi}	0.86	Pn	927.21	936.44	1268.71	1277.94	1285.32			
de placas de yeso laminado, en particiones Interiores Tabique de una hoja LM con trasdosado en ambas caras - Sistema "KNAUF" de trasdosado autoportante, de placas de yeso laminado, en particiones interiores.	f _{Rsmin}	0.37	P _{sat,n}	1346.79	1712.24	1763.30	2224.50	2239.21			
FACUADA EVERNOD DE HODIMO ON LAS	f _{Rsi}	0.87	Pn	1212.61	1273.61	1284.59	1285.32				
FACHADA EXTERIOR DE HORMIGON e=45cm.	f _{Rsmin}	0.37	P _{sat,n}	1349.15	2101.94	2236.14	2247.92				
	f_{Rsi}	0.90	Pn	Elemento exento de comprobación (punto 4, apartado							
4.PA - CUBIERTA AULAS	f _{Rsmin}	0.37	P _{sat,n}	3.2.3.2, CTE DB HE 1)							
14.PA - FORJADO ENTRE PLANTAS (Superior)	f_{Rsi}	0.81	Pn	1237.26	1282.60	1285.32					
104.PA - FORJADO ENTRE PLANTAS (Superior)	f _{Rsmin}	0.37	P _{sat,n}	1461.84	1592.30	2233.73					
T OF O DEC. CUIDIFDTA VECTUA DIOC	f_{Rsi}	0.89	Pn	Elemer	nto exen	to de cor	mprobac	ción (pun	ito 4, apa	rtado	
T.C50.PES - CUBIERTA VESTUARIOS	f _{Rsmin}	0.37	P _{sat,n}			3.2.3.2	2, CTE DB	HE 1)			
	f_{Rsi}	0.86	Pn	923.92	985.41	991.56	1196.51	1275.08	1285.32		
Tabique de dos hojas, para revestir	f _{Rsmin}	0.37	P _{sat,n}	1346.35	1424.64	1521.72	2041.73	2229.64	2238.22		
TARINA DA DADELLON	f_{Rsi}	0.87	Pn	1279.57	1279.64	1283.24	1285.32				
FACHADA PABELLON	f _{Rsmin}	0.37	P _{sat,n}	1301.47	1304.68	2036.48	2247.90				
CURIERTA VECTUARIOS	f_{Rsi}	0.87	Pn	Elemei	nto exen	to de cor	mprobac	ción (pun	ito 4, apa	rtado	
CUBIERTA VESTUARIOS	f _{Rsmin}	0.37	P _{sat,n}				2, CTE DB				
	f_{Rsi}	0.93	Pn	1285.32							
PANEL SANDWICH	f _{Rsmin}	0.37	P _{sat,n}	2299.32							
TABIQUE ENTRE PABELLON Y AULARIOS - Sistema	f_{Rsi}	0.93	Pn	1035.60	1235.22	1236.22	1282.13	1283.33	1285.32		

File File	in a	C. superficiales C. intersticiales										
Septimentation of the interior of the interi	ïpos	$f_{Rsi} \ge f_{Rsmi}$	in	$P_n \leq P_{sat,n}$	Capa 1	Capa 2	Capa 3	Capa 4	Capa 5	Capa 6	Capa 7	
Figure County Figure F	KNAUF" de trasdosado directo, de placas de reso laminado con aislamiento incorporado, en particiones interiores.	f _{Rsmin}	0.37	P _{sat,n}	1391.71	1807.78	1864.47	1954.28	2264.54	2284.46		
C50.PES - FORJADO ENTRE PLANTAS - M20.MW40.M30.MC (Inferior) final	ni15 - Forjado entre plantas -	f_{Rsi}	0.84	Pn	927.25	1216.02	1232.52	1235.82	1260.57	1285.32		
M20.MW40.M30.MC (inferior) freshin	.M20.MW40.M30.MC (Inferior)	f_{Rsmin}	0.37	P _{sat,n}	1386.47	1487.49	1496.42	2167.95	2186.60	2194.73		
M20.MW40.M30.MC (Inferior) f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1588.77 1596.87 2191.34 2207.47 2214.50 f_Rsmin 0.37 P_sat,n 1409.06 1496.54 1496.54 1496.54 1496.54 1496.54 1496.54 1496.54 1496.54 1496.54 1496.54	.C50.PES - FORJADO ENTRE PLANTAS -	f_{Rsi}	0.86	Pn	928.67	965.51	1223.42	1238.16	1241.11	1263.22	1285.32	
freshin 0.37 Psat,n freshin 0	/l20.MW40.M30.MC (Inferior)	f _{Rsmin}	0.37	P _{sat,n}	1409.06	1496.54	1588.77	1596.87	2191.34	2207.47	2214.50	
f _{Rsmin} 0.37 P _{sat,n} f _{Rsmin} 0.37 P _{sat,n} f _{Rsmin} 0.37 P _{sat,n} f _{Rsmin} 0.37 P _{sat,n} f _{Rsmin} 0.37 P _{sat,n} gente térmico en esquina entrante de erramiento f _{Rsmin} 0.37 P _{sat,n} f _{Rsmin} 0.37 P _{sat,n} f _{Rsmin} 0.37 P _{sat,n} f _{Rsmin} 0.37 P _{sat,n} gente térmico entre cerramiento y cubierta f _{Rsmin} 0.37 P _{sat,n} f _{Rsmin} 0.38 P _n Colegio Oficial de Arquitectos de Murcon de M	C50.PES - CUBIERTA AULAS	f_{Rsi}	0.86	Pn	Elemento exento de comprobación (punto 4, apartado							
framiento freshin 0.37 Psat,n idente térmico en esquina entrante de erramiento freshin 0.37 Psat,n freshin 0.3		f_{Rsmin}	0.37	P _{sat,n}			3.2.3.	2, CTE DB	HE 1)	•		
tente térmico en esquina entrante de erramiento fermino en esquina entrante de erramiento fermino en esquina entrante de erramiento fermino entre cerramiento y cubierta fermino entre cerramiento y cubierta fermino entre cerramiento y solera fermino entre cerram	uente térmico en esquina saliente de	f_{Rsi}	0.81	Pn								
tente térmico entre cerramiento y cubierta fresi 0.69 Pn fresi 0.37 Psat,n 1.0.37 Psat,n fresi 0.37 Psat		f _{Rsmin}	0.37	P _{sat,n}								
tente térmico entre cerramiento y cubierta fresi	iente térmico en esquina entrante de	f_{Rsi}	0.89	Pn								
prente térmico entre cerramiento y cubierta Figure F	erramiento	f_{Rsmin}	0.37	P _{sat,n}								
f _{Rsmin} 0.37 P _{sat,n} De DOCUMENTOS PROFESIONALES 1799 f _{Rsi} 0.73 P _n Colegio Oficial de Arquitectos de Muro f _{Rsmin} 0.37 P _{sat,n} Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVAN COS		f_{Rsi}	0.69	Pn			ന്ന	FOIOTO				
prente térmico entre cerramiento y solera f_{Rsi}	uente térmico entre cerramiento y cubierta	f _{Rsmin}	0.37	P _{sat,n}			05K (~) (31)		_	_	T .	
f _{Rsmin} 0.37 P _{sat,n} Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS		f_{Rsi}	0.73	Pn								
ente térmico entre cerramiento y foriado	ente térmico entre cerramiento y solera	f _{Rsmin}	0.37	P _{sat,n}								
iente térmico entre cerramiento y foriado		f _{Rsi}	0.72	Pn			7.31010				cos	
iksmin U.37 i sat,n	uente térmico entre cerramiento y forjado	f _{Rsmin}	0.37	P _{sat,n}			THE STATE OF THE S					

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tif: 61 9 869 982 - 659 081 538

Propiedades térmicas de los materiales empleados y definición de puentes térmicos lineales

Se describen a continuación las propiedades térmicas de los materiales empleados en la constitución de los elementos constructivos de los edificios, así como la relación de los puentes térmicos lineales considerados en el cálculo.

EDIFICIO I.E.S.

Capas						
Material	е	ρ	λ	RT	Ср	μ
1/2 pie LM métrico o catalán 40 mm< G < 50 mm	9	2170	1.04	0.0864	1000	10
Aislamiento entre montantes, de particiones interiores con trasdosado de placas.	2.5	40	0.036	0.694	1000	1
Caliza dura [2000 < d < 2190]	3	2095	1.7	0.0176	1000	150
Enfoscado de cemento.	1	1900	1.3	0.00769	1000	10
Enfoscado de cemento.	1.5	1900	1.3	0.0115	1000	10
Enlucido de yeso d < 1000	1.5	900	0.4	0.0375	1000	6
EPS Poliestireno Expandido [0.029 W/[mK]]	3	30	0.029	1.03	1000	20
EPS Poliestireno Expandido [0.029 W/[mK]]	4	30	0.029	1.38	1000	20
EPS Poliestireno Expandido [0.029 W/[mK]]	10	30	0.029	3.45	1000	20
FR Entrevigado de hormigón -Canto 350 mm	35	1610	1.94	0.18	1000	10
Frondosa de peso medio 565 < d < 750	1	660	0.18	0.0556	1600	50
FU Entrevigado de hormigón -Canto 300 mm	30	1240	1.42	0.211	1000	80
Guarnecido de yeso.	1	1150	0.57	0.0175	1000	6
Hoja de partición interior de fábrica de bloque de hormigón para revestir.	29	1100	0.885	0.328	1000	10
Hoja de partición interior de fábrica de ladrillo para revestir.	4	1000	0.444	0.09	1000	10
Hoja de partición interior de fábrica de ladrillo para revestir.	9	900	0.522	0.172	1000	10
Hoja de partición interior de fábrica de ladrillo para revestir.	9	930	0.563	0.16	1000	10
Hoja de partición interior de fábrica de ladrillo para revestir.	11.5	930	0.438	0.263	1000	10
Hoja exterior de fachada, de fábrica de bloque de granito, con cámara de aire ventilada.	5	2600	2.8	0.0179	1000	10000
Hoja exterior de fachada, de fábrica de ladrillo para revestir.	11.5	930	0.438	0.263	1000	10
Hoja interior de fachada, de fábrica para revestir.	9	930	0.438	0.206	1000	10
Hoja interior de fachada, de fábrica para revestir.	9	930	0.563	0.16	1000	10
Hoja interior de fachada, de fábrica para revestir.	29	1100	0.885	0.328	1000	10
Hormigón armado 2300 < d < 2500	30	2400	2.3	0.13	1000	80
Hormigón armado d > 2500	20	2600	2.5	0.08	1000	80
Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 < d < 1250	2	1125	0.55	0.0364	1000	10
Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 < d < 1250	3	1125	0.55	0.0545	1000	10
Mortero de cemento o cal para albañilería y para revoco/enlucido 1000 < d < 1250	10	1125	0.55	0.182	1000	10
Mortero de cemento o cal para albañilería y para revoco/enlucido 1800 < d < 2000	2	1900	1.3	0.0154	1000	10
Mortero de cemento o cal para albañilería y para revoco/enlucido 1800 < d < 2000	3	1900	1.3	0.0231	1000	10
Mortero de cemento o cal para albañilería y para revoco/enlucido 1800 < d < 2000	9	1900	1.3	0.0692	1000	10
Morteros monocapa.	3.5	1300	0.7	0.05	1000	10
MW Lana mineral [0.04 W/[mK]]	2	40	0.041	0.488	1000	1
MW Lana mineral [0.04 W/[mK]]	3	40	0.041	0.732	1000	1
MW Lana mineral [0.04 W/[mK]]	4	40	0.041	0.976	1000	1
panel de lana de roca	3	40	0.036	0.833	1000	1
placa de yeso laminado	0.5	825	0.25	0.02	1000	4
placa de yeso laminado	1.25	825	0.25	0.05	1000	4
Placa de yeso o escayola 750 < d < 900	3	825	0.25	0.12	1000	4
Plaqueta o baldosa cerámica	1	2000	1	0.01	800	30
Poliestireno [PS]	0.5	1050	0.16	0.0313	1300	100000
Polietileno reticulado	4	27	0.033	1.21	1000	100000
PUR Proyección con CO2 celda cerrada [0.035 W/[mK]]	3	50	0.035	0.857	1000	100
PUR Proyección con CO2 celda cerrada [0.035 W/[mK]]	5	50	0.035	1.43	1000	100

	Abreviatu	rası	ıtilizadas		
e	Espesor (cm)	RT Resistencia térmica (m²K/W)			
ρ	Densidad (kg/m³)	Ср	Calor específico (J/kgK)		
λ	Conductividad (W/mK)	μ	Factor de resistencia a la difusión del vapor de agua		

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG 23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61

869 982 - 659 081 538

Número Fecha

Pado Registrado y acreditado.

Número Fecha

Pado Registrado y acreditado.

	Vidrios		
	Material	U _{Vidrio}	g⊥
Acristal	amiento (U = 2.33 kcal/(h m²°C) / Factor solar = 0.76)	2.70	0.76
	Abreviaturas utilizadas		
Uvidrio	Coeficiente de transmisión (W/m 2 K) g_{\perp} Factor solar	•	

Marcos	Marcos									
Material	U _{Marco}									
Metálico, con rotura de puente térmico	4.00									
Abreviaturas utilizadas										
U _{Marco} Coeficiente de transmisión (W/m²K)										

Los puentes térmicos lineales considerados en el edificio son los siguientes:

EDIFICIO I.E.S.

F	Puentes térmicos lineales		
Nom	bre	Ψ	F_{Rsi}
Fachada en esquina vertical saliente		0.08	0.81
Fachada en esquina vertical entrante		0.08	0.89
Forjado en esquina horizontal saliente		0.38	0.69
Unión de solera con pared exterior		0.14	0.73
Forjado entre pisos		0.42	0.72
Ventana en fachada		0.40	0.67
	A1		
	Abreviaturas utilizadas		
Ψ Transmitancia lineal (W/mK)	F _{Rsi} Factor de temperatura	a de la superficie interior	

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG 23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

1.6.2 HE 2 Rendimiento de las instalaciones térmicas

- 1.6.2.1 Esta exigencia viene determinada en el Reglamento de Instalaciones Termicas de los Edificios (RITE), por lo que en este apartado, pasaremos a describir las condiciones de nuestras instalaciones, para que las mismas cumplan con los requisitos exigidos en dicho reglamento.
- 1.6.2.2 Exigencia de bienestar e higiene
- Justificación del cumplimiento de la exigencia de calidad del ambiente del apartado 1.4.1 1.6.2.2.1

La exigencia de calidad térmica del ambiente se considera satisfecha en el diseño y dimensionamiento de la instalación térmica. Por tanto, todos los parámetros que definen el bienestar térmico se mantienen dentro de los valores establecidos.

En la siguiente tabla aparecen los límites que cumplen en la zona ocupada.

Parámetros	Límite
Temperatura operativa en verano (°C)	$23 \le T \le 25$
Humedad relativa en verano (%)	$45 \le HR \le 60$
Temperatura operativa en invierno (°C)	$21 \le T \le 23$
Humedad relativa en invierno (%)	40 ≤ HR ≤ 50
Velocidad media admisible con difusión por mezcla (m/s)	V ≤ 0.11

A continuación se muestran los valores de condiciones interiores de diseño utilizadas en el proyecto:

EDIFICIO I.E.S.:

Referencia	Condiciones interiores de diseño										
	Temperatura de verano	Temperatura de invierno	Humedad relativa interior								
Aula	24	21	50								
Cafetería	24	21	50								
Despacho	24	21	50								
Gimnasio	24	21	50								
Vestuarios	24	21	50								

1.6.2.2.2 Justificación del cumplimiento de la exigencia de calidad del aire interior del apartado 1.4.2 Categorías de calidad del aire interior 1.6.2.2.2.1

En función del edificio o local, la categoría de calidad de aire interior (IDA) que se deberá alcanzar será como mínimo la siguiente:

IDA 1 (aire de óptima calidad): hospitales, clínicas, laboratorios y guarderías.

IDA 2 (aire de buena calidad): oficinas, residencias (locales comunes de hoteles y similares, residencias de ancianos y estudiantes), salas de lectura, museos, salas de tribunales, aulas de enseñanza y asimilables y piscinas.

IDA 3 (aire de calidad media): edificios comerciales, cines, teatros, salones de actos, habitaciones de hoteles y similares, restaurantes, cafeterías, bares, salas de fiestas, gimnasios, locales para el deporte (salvo piscinas) y salas de ordenadores.

IDA 4 (aire de calidad baja)

Caudal mínimo de aire exterior 1.6.2.2.2.2

El caudal mínimo de aire exterior de ventilación necesario se calcula según el método indirecto de caudal de aire exterior por persona y el método de caudal de aire por unidad de superficie, especificados en la instrucción técnica I.T.1.1.4.2.3.

Se describe a continuación la ventilación diseñada para los recintos utilizados en el proyecto.

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha 659 081 538

	Calidad del aire	interior
Referencia	IDA/IDAIIIII.	Fumador (m³/(h·m²))
	Almacén	
	Aseo de planta	
Aula	IDA 2	No
Cafetería	IDA 3 NO FUMADOR	No
	Cuarto de limpieza	
Despacho	IDA 2	No
Gimnasio	IDA 3 NO FUMADOR	No
	Hueco de ascensor	
	Sala de máquinas	
Vestuarios	IDA 3 NO FUMADOR	No
	Zona de circulación	

1.6.2.2.2.3 Filtración de aire exterior

El aire exterior de ventilación se introduce al edificio debidamente filtrado según el apartado I.T.1.1.4.2.4. Se ha considerado un nivel de calidad de aire exterior para toda la instalación ODA 2, aire con altas concentraciones de partículas.

Las clases de filtración empleadas en la instalación cumplen con lo establecido en la tabla 1.4.2.5 para filtros previos y finales.

Filtros previos:

	IDA 1	IDA 2	IDA 3	IDA 4
ODA 1	F7	F6	F6	G4
ODA 2	F7	F6	F6	G4
ODA 3	F7	F6	F6	G4
ODA 4	F7	F6	F6	G4
ODA 5	F6/GF/F9	F6/GF/F9	F6	G4

Filtros finales:

	ID A 1	IDA 2	IDA 3	IDA 4
ODA 1	F9	F8	F7	F6
ODA 2	F9	F8	F7	F6
ODA 3	F9	F8	F7	F6
ODA 4	F9	F8	F7	F6
ODA 5	F9	F8	F7	F6

1.6.2.2.2.4 Aire de extracción

En función del uso del edificio o local, el aire de extracción se clasifica en una de las siguientes categorías:

AE 1 (bajo nivel de contaminación): aire que procede de los locales en los que las emisiones más importantes de contaminantes proceden de los materiales de construcción y decoración, además de las personas. Está excluido el aire que procede de locales donde se permite fumar.

AE 2 (moderado nivel de contaminación): aire de locales ocupados con más contaminantes que la categoría anterior, en los que, además, no está prohibido fumar.

AE 3 (alto nivel de contaminación): aire que procede de locales con production de productos químicos, humedad, etc.

REGISTRO Y ACREDITACION 23/12/2015

DE DOCUMENTOS PROFESIONALES 179500/52957

AE 4 (muy alto nivel de contaminación): aire que contiene sustancias oloros contaminantes perjudiciales para la salud en concentraciones mayores que las permitidas en el aire interior de la zona ocupada.

Se describe a continuación la categoría de aire de extracción que se ha considerado pana மக்கி வெருவி வாக்கி வரியில் வரியில் மாக்கி வரியில் மக்கி வரியில் வரி

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tif: 619 869 982 - 659 081 538

Referencia	Categoría
Aula	AE1
Cafetería	AE2
Despacho	AE1
Gimnasio	AE2
Vestuarios	AE2

1.6.2.2.3 Justificación del cumplimiento de la exigencia de higiene del apartado 1.4.3

La instalación interior de ACS se ha dimensionado según las especificaciones establecidas en el Documento Básico HS-4 del Código Técnico de la Edificación.

1.6.2.2.4 Justificación del cumplimiento de la exigencia de calidad acústica del apartado 1.4.4

La instalación térmica cumple con la exigencia básica HR Protección frente al ruido del CTE conforme a su documento básico.

1.6.2.3 Exigencia de eficiencia energética

1.6.2.3.1 Justificación del cumplimiento de la exigencia de eficiencia energética en la generación de calor y frío del apartado 1.2.4.1

1.6.2.3.1.1 Generalidades

Las unidades de producción del proyecto utilizan energías convencionales ajustándose a la carga máxima simultánea de las instalaciones servidas considerando las ganancias o pérdidas de calor a través de las redes de tuberías de los fluidos portadores, así como el equivalente térmico de la potencia absorbida por los equipos de transporte de fluidos.

1.6.2.3.1.2 Cargas térmicas

1.6.2.3.1.2.1 Cargas máximas simultáneas

A continuación se muestra el resumen de la carga máxima simultánea para cada uno de los conjuntos de recintos:

Refrigeración (EDIFICIO I.E.S.)

keingeracion (EDII	FICIO I.E.S.)											
				Conj	unto: 2							
	Carga	interna		Ventilac	ción	Potencia térmica						
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)	(kcal/h)	Sensibl e (kcal/h)	lotal (kcal/b)	Cauda I (m³/h)		(kcal/h)	Por superficie (kcal/(h·m²))		Total (kcal/h)
DESPACHO PABELLON	PLANTA BAJA	186.63	798.51	954.36	1014.70	1170.54	122.39	141.53	438.53	65.73	1156.22	1609.07
Total							122.4					
Carga total simultáne	a											1609.1

Conjunto: 4												
			Subtotales		Carga	Carga interna			ción	Potencia térmica		a
Recinto	Planta	Estructural (kcal/h) Sensible interior (kcal/h) (kcal/h) Total inte		Total interior (kcal/h)	Sensibl e (kcal/h)	Total (kcal/h)	Cauda I (m³/h)			Por superficie (kcal/(h·m²))	Sensibl e (kcal/h)	Total (kcal/h)
CANTINA PABELLON	PLANTA BAJA	775.03	5502.04	7719.80	6465.39	8683.15	2102.43	2078.74	7546.55	222.32	8544.12	16229.70
Total							2102.4					
Carga total simultánea												16229.7

	Conjunto: 7												
			Subtotales		Carga interna Ventilación					Potencia térmica			
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)	Total interior (kcal/h)		Total (kcal/h)		Sensible (kcal/h)		Por superficie (kcal/(h·m²))		Total (kcal/h)	
PABELLO N	PLANTA BAJA	4160.91	24228.70	54488.17	29241.30	59500.76	10537.99	12185.20	37756.43	150.60	41426.50	97257.19	
T - 1 - 1							405000						

Total 10538.0 Carga total simultánea

REGISTRO Y ACREDITACION 77257.23/12/2015

DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ
ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61

El Colegio Acredita la firma digital de los autores
El presente documento ha sido registrado y acreditado.
2, 450,021,529

	Conjunto: PLANTA BAJA - AULA											
			Subtotales		Carga	interna		Ventilac	ión	Potenc	а	
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)	Total interior (kcal/h)				Sensible (kcal/h)		Por superficie (kcal/(h·m²))		
	PLANTA BAJA	354.29	2988.34	3887.43	3442.91	4342.00	1320.97	1306.08	4741.55	154.72	4748.99	9083.55
Total							1321.0					
Carga	Carga total simultánea 900											9083.5

Conjunto: PLANTA BAJA - AULA DESDOBLE P.BAJA												
			Subtotales		Carga interna		Ventilación			Potencia térmica		а
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)	(kool/b)	Sensibl e (kcal/h)	Total (kcal/h)	Cauda I (m³/h)		Carga total (kcal/h)	Por superficie (kcal/(h·m²))	Sensibl e (kcal/h)	Total (kcal/h)
AULA DESDOBLE P.BAJA	PLANTA BAJA	189.58	1576.17	2055.69	1818.73	2298.24	688.57	680.81	2471.58	155.86	2499.54	4769.82
Total							688.6					
Carga total simultánea	1											4769.8

Conjunto: PLANTA BAJA - VEST. FEM. PABELLON												
		Subtotales		Carga	Carga interna		Ventilac	Potencia térmica				
Recinto	Planta	Estructural (kcal/h) Sensible interior (kcal/h)		Total interior (kcal/h)	Sensibl e (kcal/h)	Total (kcal/h)	Cauda I (m³/h)			Por superficie (kcal/(h·m²))		Total (kcal/h)
VEST. FEM. PABELLON	PLANTA BAJA	104.31	1587.20	3682.08	1742.25	3837.14	663.56	656.09	2381.82	152.93	2398.34	6218.96
Total		•					663.6					
Carga total simultánea												6219.0

			Conjunto:	PLANTA BAJ <i>A</i>	- VEST. N	/IASC. PA	BELLON					
			Subtotales		Carga	interna		Ventilac	ión	Potenc	ia térmic	а
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)			Total (kcal/h)	1.7. 2.11.3	Sensibl e (kcal/h)	(kool/b)	Por superficie (kcal/(h·m²))	Sensibl e (kcal/h)	Total (kcal/h)
VEST. MASC. PABELLON	PLANTA BAJA	122.70	1594.52	3689.41	1768.74	3863.62	672.52	664.94	2413.97	152.32	2433.68	6277.59
Total							672.5					
Carga total simultánea	Carga total simultánea 6										6277.6	

			Con	junto: PLANTA	BAJA - N	/EST. PRO	F. FEM.					
			Subtotales		Carga	interna		Ventilac	ción	Potenc	ia térmic	:a
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)	Total interior (kcal/h)	Sensible (kcal/h)			Sensible (kcal/h)		Por superficie (kcal/(h·m²))		
VEST. PROF. FEM.	PLANTA BAJA	20.32	177.64	410.40	203.90	436.66	75.30	74.45	270.28	153.20	278.35	706.94
Total				•			75.3					
Carga total simu	ultánea											706.9

			Conji	unto: PLANTA	BAJA - V	EST. PROF	. MASC					
			Subtotales		Carga	interna		Ventilac	ión	Potenc	ia térmic	а
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)			Total (kcal/h)	Cauda I (m³/h)	Sensibl e (kcal/h)	Carga total (kcal/h)	Por superficie (kcal/(h·m²))	Sensibl e (kcal/h)	Total (kcal/h)
VEST. PROF. MASC	PLANTA BAJA	20.18	177.64	410.40	203.76	436.52	75.30	74.45	270.28	153.17	278.21	706.80
Total 75.3												
Carga total simultánea									706.8			

				Con	junto: 8							
			Subtotales		Carga	interna		Ventilad	ción	Potenc	ia térmic	а
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)	Total interior (kcal/h)	_	Total (kcal/h)	1 (m ³ /h)	Sensibl e (kcal/h)	(kcal/b)	Por superficie (kcal/(h·m²))		Total (kcal/h)
AULA DESDOBLE PPISO	PLANTA PISO	2161.32	1565.99	2045.50	3839.13	4318.64	679.35	-584.41	1231.46	183.82	3254.72	5550.10
Total							679.3					
Carga total simulta	Carga total simultánea									5550.1		

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
MMPG Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

				C	onjunto: 9							
			Subtotales		Carga	interna		Ventilac	ión	Potenc	cia térmic	:a
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)	Total interior (kcal/h)				Sensible (kcal/h)		Por superficie (kcal/(h·m²))		
DESPACHO PPISO	PLANTA PISO	1099.79	532.90	636.79	1681.67	1785.56	80.50	-69.25	145.92	119.97	1612.42	1931.48
Total							80.5					
Carga total sim	nultánea											1931.5

				Conju	nto: PLAN	TA PISO -	AULA 1					
			Subtotales		Carga	interna		Ventilac	ión	Poteno	cia térmic	:a
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)	Total interior (kcal/h)				Sensible (kcal/h)	.,	Por superficie (kcal/(h·m²))		
AULA 1	PLANTA PISO	3956.37	2873.92	3743.05	7035.21	7904.33	1263.53	-1086.96	2290.41	181.54	5948.25	10194.74
Total							1263.5					
Carga	total simultán	ea										10194.7

				Conjui	nto: PLAN	TA PISO -	AULA 2					
			Subtotales		Carga	interna		Ventilac	ión	Poteno	cia térmic	a
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)	Total interior (kcal/h)					Carga total (kcal/h)	Por superficie (kcal/(h·m²))		
AULA 2	PLANTA PISO	3987.52	2890.11	3759.23	7083.96	7953.08	1278.19	-1099.56	2316.97	180.78	5984.39	10270.05
Total							1278.2					
Carga	total simultán	ea						•	•	•	•	10270.1

				Conju	nto: PLAN	TA PISO -	AULA 3					
			Subtotales		Carga	interna		Ventilac	ión	Poteno	cia térmic	a
Recinto	Planta	Estructural (kcal/h)	Sensible interior (kcal/h)	Total interior (kcal/h)					Carga total (kcal/h)	Por superficie (kcal/(h·m²))		
AULA 3	Planta Piso	4073.51	2889.03	3758.16	7171.42	8040.54	1277.21	-1098.73	2315.21	182.43	6072.69	10355.75
Total							1277.2					
Carga	total simultán	ea										10355.7

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
MMPG Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Calefacción (EDIFICIO I.E.S.)

		Conjunto: 2				
		0 !!!!	Ver	ntilación	Potenc	ia
Recinto	Planta	Carga interna sensible (kcal/h)	Caudal (m³/h)		Por superficie (kcal/(h·m²))	
DESPACHO PABELLON	PLANTA BAJA	1139.71	122.39	560.64	69.46	1700.35
Total			122.4			
Carga total simultán	ea					1700.3

		Camiumta: 4				
		Conjunto: 4				
			Ver	ntilación	Potenc	ia
Recinto	Planta	Carga interna sensible (kcal/h)	Caudal (m³/h)		Por superficie (kcal/(h·m²))	
CANTINA PABELLON	PLANTA BAJA	4065.86	2102.43	9630.31	187.62	13696.17
Total			2102.4			
Carga total simu	ıltánea					13696.2

		Conjur	nto: 7			
			ı	tilación	Potenc	ia
Recinto	Planta	Carga interna sensible (kcal/h)	Caudal (m³/h)	.,	Por superficie (kcal/(h·m²))	Total (kcal/h)
PABELLO N	PLANTA BAJA	11767.73	10537.99	48269.87	92.97	60037.60
Total			10538.0			
Carga to	tal simultánea					60037.6

		Conjunto: PLANT	A BAJA -	AULA		
			Ver	ntilación	Potenc	ia
Recinto	Planta	Carga interna sensible (kcal/h)	Caudal (m³/h)		Por superficie (kcal/(h·m²))	
	PLANTA BAJA	2128.03	1320.97	6050.79	139.31	8178.82
Total			1321.0			
Carga	total simultáne	a				8178.8

Conjunto: PLANTA BAJA - AULA DESDOBLE P.BAJA									
Recinto				ntilación	Potencia				
	Planta		Caudal (m³/h)		Por superficie (kcal/(h·m²))				
AULA DESDOBLE P.BAJA	PLANTA BAJA	1277.85		3154.03	144.82	4431.88			
Total 688.6									
Carga total simultánea									

Conjunto: PLANTA BAJA - VEST. FEM. PABELLON									
	Planta	Carga interna sensible (kcal/h)	Ver	ntilación	Potencia				
Recinto			Caudal (m³/h)		Por superficie (kcal/(h·m²))				
VEST. FEM. PABELLON	PLANTA BAJA	1160.85	663.56	3039.49	103.29	4200.34			
Total			663.6						
Carga total simultánea									

Conjunto: PLANTA BAJA - VEST. MASC. PABELLON									
			Ventilación			Potencia			
Recinto	Planta	(KCal/n)	Caudal (m³/h)			Por superficie (kcal/(h·m²))			
VEST. MASC. PABELLON	PLANTA BAJA	1211.33	672.52	3080	0.52	104.14	4291.85		
Total			672.5		സ്ത	DECISTRO	V ACD		

Carga total simultánea

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61 9 869 982 - 659 081 538

	Conjunto: PLANTA BAJA - VEST. PROF. FEM.									
			Ver	ntilación	Potencia					
Recinto	Planta		Caudal (m³/h)		Por superficie (kcal/(h·m²))					
VEST. PROF. FEM.	PLANTA BAJA	217.03	75.30	344.91	121.78	561.94				
Total			75.3							
Carga total simultánea										

	Conjunto: PLANTA BAJA - VEST. PROF. MASC									
		Carga interna sensible (kcal/h)		ntilación	Potencia					
Recinto	Planta		Caudal (m³/h)		Por superficie (kcal/(h·m²))					
VEST. PROF. MASC	PLANTA BAJA	217.03	75.30	344.91	121.78	561.94				
Total			75.3							
Carga total simultánea										

Conjunto: 8									
		Carga interna sensible (kcal/h)	Ventilación		Potencia				
Recinto	Planta		Caudal (m³/h)		Por superficie (kcal/(h·m²))				
AULA DESDOBLE PPISO	PLANTA PISO 1221.05		679.35	3111.79	143.50	4332.84			
Total			679.3						
Carga total simultánea									

		Conjunto: 9)				
			Ver	ntilación	Potencia		
Recinto	Planta	Carga interna sensible (kcal/h)	Caudal (m³/h)		Por superficie (kcal/(h·m²))		
DESPACHO PPISO	PLANTA PISO	764.51	80.50	368.72	70.39	1133.23	
Total			80.5				
Carga total simultánea							

	Conjunto: PLANTA PISO - AULA 1								
	Planta	Carga interna sensible (kcal/h)	Ver	ntilación	Potencia				
Recinto			Caudal (m³/h)		Por superficie (kcal/(h·m²))				
ΙΔΙΙΙΔ 1	Planta Piso	2183.43	1263.53	5787.68	141.94	7971.12			
Total			1263.5						
Carga total simultánea									

	Conjunto: PLANTA PISO - AULA 2								
		Carga interna sensible (kcal/h)	Ver	ntilación	Potencia				
Recinto	Planta		Caudal (m³/h)		Por superficie (kcal/(h·m²))				
AULA 2	PLANTA PISO	2098.48	1278.19	5854.81	140.00	7953.29			
Total			1278.2						
Carga total simultánea									

		Conjunto: PLANT						
		Cargo interna concible	Vei	ntilación	Potenc	ia		
Recinto	Planta	Carga interna sensible (kcal/h)	Caudal (m³/h)		Por superficie (kcal/(h·m²))			
AULA 3	PLANTA PISO	2083.75	1277.21	5850.35	139.77	7934.10		
Total			1277.2					
Carga total simultánea				430 (A)		Y ACREDITACION		
						OCUMEN.	TOS PROFESIONALES	179500/52957

En el anexo aparece el cálculo de la carga térmica para cada uno de los recentos de colegia la carga térmica para cada uno de los recentos de colegia la carga térmica para cada uno de los recentos de colegia la carga térmica para cada uno de los recentos de colegia la carga térmica para cada uno de los recentos de consecuencia de la carga térmica para cada uno de los recentos de consecuencia de la carga térmica para cada uno de los recentos de consecuencia de la carga térmica para cada uno de los recentos de consecuencia de la carga térmica para cada uno de los recentos de consecuencia de la carga térmica para cada uno de los recentos de consecuencia de la carga térmica para cada uno de los recentos de consecuencia de la carga térmica para cada uno de los recentos de la carga termica de la carga

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

1.6.2.3.1.2.2 Cargas parciales y mínimas

Se muestran a continuación las demandas parciales por meses para cada uno de los conjuntos de recintos.

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez
C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Calefacción (EDIFICIO I.E.S.):

Conjunto de recintos	Carga máxima	simultán (kW)	ea por mes
	Diciembre	Enero	Febrero
PLANTA BAJA - AULA	9.50	9.50	9.50
PLANTA BAJA - AULA DESDOBLE P.BAJA	5.15	5.15	5.15
2	1.97	1.97	1.97
4	15.90	15.90	15.90
PLANTA BAJA - VEST. MASC. PABELLON	4.98	4.98	4.98
PLANTA BAJA - VEST. FEM. PABELLON	4.88	4.88	4.88
PLANTA BAJA - VEST. PROF. MASC	0.65	0.65	0.65
PLANTA BAJA - VEST. PROF. FEM.	0.65	0.65	0.65
7	69.71	69.71	69.71
PLANTA PISO - AULA 1	9.26	9.26	9.26
PLANTA PISO - AULA 2	9.24	9.24	9.24
PLANTA PISO - AULA 3	9.21	9.21	9.21
8	5.03	5.03	5.03
9	1.32	1.32	1.32

Potencia térmica instalada 1.6.2.3.1.3

En la siguiente tabla se resume el cálculo de la carga máxima simultánea, la pérdida de calor en las tuberías y el equivalente térmico de la potencia absorbida por los equipos de transporte de fluidos con la potencia instalada para cada conjunto de recintos.

	Conjunto de recintos	P _{instalada} (kW)	%qt	ub	%q _{equipos}	Q _{cal} (kW)	Total (kW)
EDIFICIO I.E.S. 300.00			2.5	3	2.00	142.38	155.95
		Abreviaturas	sutilizac	las			
P _{instalad}	Potencia instalada (kW)			Porcentaje del equivalente térmico de la potencia absorbida por los equipos de transporte de fluidos respecto a la potencia instalada (%)			
%q _{tub}	%Qtub Porcentaje de pérdida de calor en tuberías para calefacción respecto a la potencia instalada (%)			Carga máxima simultánea de calefacción (kW)			

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Justificación del cumplimiento de la exigencia de eficiencia energética en las redes de tuberías y 1.6.2.3.2 conductos de calor y frío del apartado 1.2.4.2

1.6.2.3.2.1 Aislamiento térmico en redes de tuberías

El aislamiento de las tuberías se ha realizado según la I.T.1.2.4.2.1.1 'Procedimiento simplificado'. Este método define los espesores de aislamiento según la temperatura del fluido y el diámetro exterior de la tubería sin aislar. Las tablas 1.2.4.2.1 y 1.2.4.2.2 muestran el aislamiento mínimo para un material con conductividad de referencia a 10 °C de 0.047

El cálculo de la transmisión de calor en las tuberías se ha realizado según la norma UNE-EN ISO 12241.

Se han considerado las condiciones interiores de diseño en los recintos para el cálculo de las pérdidas en las tuberías especificados en la justificación del cumplimiento de la exigencia de calidad del ambiente.

A continuación se describen las tuberías y los aislamientos empleados, además de las pérdidas por metro lineal y las pérdidas totales de calor.

EDIFICIO I.E.S.

EDITIOIO I.E.S.	EBITION I.E.S.								
Tubería	Ø	λ _{aisl.} (W/(m·K))	e _{aisl.} (mm)	L _{imp.} (m)	L _{ret.} (m)	Φ _{m.ref.} (W/m)	q _{ref.} (W)	$\Phi_{\text{m.cal.}}$ (W/m)	q _{cal.} (W)
Tipo 1	63	0.037	29	3.05	3.66	0.00	0.0	20.52	137.6
Tipo 1	50	0.037	29	16.41	20.77	0.00	0.0	16.43	610.8
Tipo 1	40	0.037	27	35.42	40.16	0.00	0.0	14.25	1077.0
Tipo 1	20	0.037	25	148.00	158.08	0.00	0.0	9.59	2934.1
Tipo 1	32	0.037	27	60.11	66.45	0.00	0.0	12.67	1603.0
Tipo 1	32	0.037	27	3.00	2.78	0.00	0.0	18.49	106.9
Tipo 1	25	0.037	25	27.64	22.34	0.00	0.0	11.29	564.3
Tipo 2	20	0.037	25	25.39	31.90	0.00	0.0	9.50	544.0
						Total	7578		

	Abreviaturas utilizadas						
Ø	Diámetro nominal	$\Phi_{\text{m.ref}}$	Valor medio de las pérdidas de calor para refrigeración por unidad de longitud				
λaisl.	Conductividad del aislamiento	q _{ref.}	Pérdidas de calor para refrigeración				
eaisl.	Espesor del aislamiento	$\Phi_{\text{m.cal.}}$	Valor medio de las pérdidas de calor para calefacción por unidad de longitud				
L _{imp.}	Longitud de impulsión	q _{cal} .	Pérdidas de calor para calefacción				
L _{ret.}	Longitud de retorno						

Tubería	Referencia
Тіро 1	Tubería de distribución de agua caliente de climatización formada por tubo de polipropileno copolímero random resistente a la temperatura (PP-RCT), de, PN=12,5 atm, colocada superficialmente en el interior del edificio, con aislamiento mediante coquilla flexible de espuma elastomérica recubierta con pintura protectora para aislamiento de color azul.
Tipo 2	Tubería general de distribución de agua caliente de climatización formada por tubo de polipropileno copolímero random resistente a la temperatura (PP-RCT), de, PN=12,5 atm, empotrada en paramento, con aislamiento mediante coquilla flexible de espuma elastomérica.

Para tener en cuenta la presencia de válvulas en el sistema de tuberías se ha añadido un 25 % al cálculo de la pérdida de calor.

1.6.2.3.2.2 Pérdida de calor en tuberías

El porcentaje de pérdidas de calor en las tuberías de la instalación es el siguiente:

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

Potencia de los equipos (kW)	q _{cal} (W)	Pérdida de calor (%)
,	7577.7	(- /

Por tanto la pérdida de calor en tuberías es inferior al 4.0 %.

Eficiencia energética de los motores eléctricos

Los motores eléctricos utilizados en la instalación quedan excluidos de la exigencia de rendimiento mínimo, según el punto 3 de la instrucción técnica I.T. 1.2.4.2.6.

162324 Redes de tuberías

El trazado de las tuberías se ha diseñado teniendo en cuenta el horario de funcionamiento de cada subsistema, la longitud hidráulica del circuito y el tipo de unidades terminales servidas.

1.6.2.3.3 Justificación del cumplimiento de la exigencia de eficiencia energética en el control de instalaciones térmicas del apartado 1.2.4.3

1.6.2.3.3.1 Generalidades

La instalación térmica proyectada está dotada de los sistemas de control automático necesarios para que se puedan mantener en los recintos las condiciones de diseño previstas.

Control de las condiciones termohigrométricas

El equipamiento mínimo de aparatos de control de las condiciones de temperatura y humedad relativa de los recintos, según las categorías descritas en la tabla 2.4.2.1, es el siguiente:

Variación de la temperatura del fluido portador (agua-aire) en función de la temperatura exterior y/o control de la temperatura del ambiente por zona térmica.

THM-C2:

Como THM-C1, más el control de la humedad relativa media o la del local más representativo.

THM-C3:

Como THM-C1, más variación de la temperatura del fluido portador frío en función de la temperatura exterior y/o control de la temperatura del ambiente por zona térmica.

Como THM-C3, más control de la humedad relativa media o la del recinto más representativo.

THM-C5:

Como THM-C3, más control de la humedad relativa en locales.

A continuación se describe el sistema de control empleado para cada conjunto de recintos:

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

Conjunto de recintos	Sistema de control
PLANTA BAJA - AULA	THM-C1
PLANTA BAJA - AULA DESDOBLE P.B	AJA THM-C1
2	THM-C1
4	THM-C1
PLANTA BAJA - VEST. MASC. PABELL	ON THM-C1
PLANTA BAJA - VEST. FEM. PABELLO	N THM-C1
PLANTA BAJA - VEST. PROF. MASC	THM-C1
PLANTA BAJA - VEST. PROF. FEM.	THM-C1
7	THM-C1
PLANTA PISO - AULA 1	THM-C1
PLANTA PISO - AULA 2	THM-C1
PLANTA PISO - AULA 3	THM-C1
8	THM-C1
9	THM-C1

1.6.2.3.3.3 Control de la calidad del aire interior en las instalaciones de climatización

El control de la calidad de aire interior puede realizarse por uno de los métodos descritos en la tabla 2.4.3.2.

Categoría	Tipo	Descripción
IDA-C1		El sistema funciona continuamente
IDA-C2	Control manual	El sistema funciona manualmente, controlado por un interruptor
IDA-C3	Control por tiempo	El sistema funciona de acuerdo a un determinado horario
IDA-C4	Control por presencia	El sistema funciona por una señal de presencia
IDA-C5	Control por ocupación	El sistema funciona dependiendo del número de personas presentes
IDA-C6	Control directo	El sistema está controlado por sensores que miden parámetros de calidad del aire interior

Se ha empleado en el proyecto el método IDA-C4 y IDA-C6.

1.6.2.3.4 Justificación del cumplimiento de la exigencia de recuperación de energía del apartado

1.2.4.5 1.6.2.3.4.1 Recuperación del aire exterior

Se muestra a continuación la relación de recuperadores empleados en la instalación.

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número Fecha Septembro 1 - 659 081 538

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

Tipo	N	Caudal (m³/h)	ΔP (mm.c.a.)	E (%)
Tipo 1	3000	2100.0	10.2	52.5
Tipo 2	3000	1500.0	10.2	51.6
Tipo 3	3000	2100.0	10.2	52.5
Tipo 4	3000	800.0	10.2	53.9
Tipo 5	3000	1300.0	10.2	51.6
Tipo 5	3000	1300.0	10.2	51.6
Tipo 5	3000	1300.0	10.2	51.6

Abreviaturas utilizadas					
Tipo	Tipo de recuperador	ΔΡ	Presion disponible en el recuperador (mm.c.a.)		
N	Número de horas de funcionamiento de la instalación	E	Eficiencia en calor sensible (%)		
Caudal	Caudal de aire exterior (m³/h)				

Recuperador	Referencia
Tipo 1	recuperador de calor aire-aire, con intercambiador de flujo cruzado, caudal máximo de 3100 m³/h, eficiencia sensible 52,5%, para montaje horizontal dimensiones 1250x1250x600 mm y nivel de presión sonora de 52 dBA en campo libre a 1,5 m, modelo CADB-D 30 AH "S&P", con caja de acero galvanizado y plastificado, color marfil, con aislamiento, clase B según UNE-EN 13501-1, soportes antivibratorios, embocaduras de 355 mm de diámetro con junta estanca, prefiltro F6 y filtro F8, clase D según UNE-EN 13501-1, 2 ventiladores centrífugos de doble oído de accionamiento directo con motores eléctricos monofásicos de 3 velocidades de 550 W cada uno, aislamiento F, protección IP 20, caja de bornes externa con protección IP 55
Tipo 2	recuperador de calor aire-aire, con intercambiador de flujo cruzado, caudal máximo de 1900 m³/h, eficiencia sensible 51,6%, para montaje horizontal dimensiones 1000x1000x500 mm y nivel de presión sonora de 48 dBA en campo libre a 1,5 m, modelo CADB-D 18 AH DP "S&P", con caja de acero galvanizado y plastificado, color marfil, con aislamiento, clase B según UNE-EN 13501-1, soportes antivibratorios, embocaduras de 315 mm de diámetro con junta estanca, prefiltro F6 y filtro F8, clase D según UNE-EN 13501-1, 2 ventiladores centrífugos de doble oído de accionamiento directo con motores eléctricos monofásicos de 3 velocidades de 373 W cada uno, aislamiento F, protección IP 20, caja de bornes externa con protección IP 55, aislamiento térmico y acústico
Tipo 3	recuperador de calor aire-aire, con intercambiador de flujo cruzado, caudal máximo de 3100 m³/h, eficiencia sensible 52,5%, para montaje horizontal dimensiones 1250x1250x600 mm y nivel de presión sonora de 52 dBA en campo libre a 1,5 m, modelo CADB-D 30 AH DP "S&P", con caja de acero galvanizado y plastificado, color marfil, con aislamiento, clase B según UNE-EN 13501-1, soportes antivibratorios, embocaduras de 355 mm de diámetro con junta estanca, prefiltro F6 y filtro F8, clase D según UNE-EN 13501-1, 2 ventiladores centrífugos de doble oído de accionamiento directo con motores eléctricos monofásicos de 3 velocidades de 550 W cada uno, aislamiento F, protección IP 20, caja de bornes externa con protección IP 55, aislamiento térmico y acústico
Tipo 4	recuperador de calor aire-aire, con intercambiador de flujo cruzado, caudal máximo de 900 m³/h, eficiencia sensible 53,9%, para montaje horizontal dimensiones 800x800x330 mm y nivel de presión sonora de 43 dBA en campo libre a 1,5 m, modelo CADB-D 08 AH "S&P", con caja de acero galvanizado y plastificado, color marfil, con aislamiento, clase B según UNE-EN 13501-1, soportes antivibratorios, embocaduras de 250 mm de diámetro con junta estanca, prefiltro F6 y filtro F8, clase D según UNE-EN 13501-1, 2 ventiladores centrífugos de doble oído de accionamiento directo con motores eléctricos monofásicos de 4 velocidades de 355 W cada uno, aislamiento F, protección IP 20, caja de bornes externa con protección IP 55
Tipo 5	recuperador de calor aire-aire, con intercambiador de flujo cruzado, caudal máximo de 1900 m³/h, eficiencia sensible 51,6%, para montaje horizontal dimensiones 1000x1000x500 mm y nivel de presión sonora de 48 dBA en campo libre a 1,5 m, modelo CADB-D 18 AH BP DP "S&P", con caja de acero galvanizado y plastificado, color marfil, con aislamiento, clase B según UNE-EN 13501-1, soportes antivibratorios, embocaduras de 315 mm de diámetro con junta estanca, prefiltro F6 y filtro F8, clase D según UNE-EN 13501-1, 2 ventiladores centrífugos de doble oído de accionamiento directo con motores eléctricos monofásicos de 3 velocidades de 373 W cada uno, aislamiento F, protección IP 20, caja de bornes externa con protección IP 55, aislamiento térmico y acústico, bypass externo

El diseño de la instalación ha sido realizado teniendo en cuenta la zonifica ción, para le constitución de la instalación ha sido realizado teniendo en cuenta la zonifica ción, para le constitución de la instalación ha sido realizado teniendo en cuenta la zonifica ción, para le constitución de la instalación ha sido realizado teniendo en cuenta la zonifica ción, para le constitución de la instalación ha sido realizado teniendo en cuenta la zonifica ción, para le constitución de la instalación ha sido realizado teniendo en cuenta la zonifica ción, para le constitución de la instalación ha sido realizado teniendo en cuenta la zonifica ción, para le constitución de la instalación ha sido realizado teniendo en cuenta la zonifica ción, para le constitución de la instalación ha sido realizado teniendo en cuenta la zonifica ción, para le constitución de la instalación de ahorro de energía. Los sistemas se han dividido en subsistemas, considerando los cios cios cios cios cios considerando los considerandos consi como su uso, ocupación y horario de funcionamiento.

Los recuperadores seleccionados para la instalación cumplen con las exigencias en la tabla 2.4.5.1.

1.6.2.3.4.2 Zonificación Zonificac

23/12/2015 179500/52957

ANA LUISA DE GONZALO VIVANCOS

Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1° izda., puerta 1 - 30001 Murcia

Tif: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado.

Número Fecha

869 982 - 659 081 538 Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

1.6.2.3.5 Justificación del cumplimiento de la exigencia de aprovechamiento de energías renovables del apartado 1.2.4.6

La instalación térmica destinada a la producción de agua caliente sanitaria cumple con la exigencia básica CTE HE 4 'Contribución solar mínima de agua caliente sanitaria' mediante la justificación de su documento básico.

1.6.2.3.6 Justificación del cumplimiento de la exigencia de limitación de la utilización de energía convencional del apartado 1.2.4.7

Se enumeran los puntos para justificar el cumplimiento de esta exigencia:

- El sistema de calefacción empleado no es un sistema centralizado que utilice la energía eléctrica por "efecto
- No se ha climatizado ninguno de los recintos no habitables incluidos en el proyecto.
- No se realizan procesos sucesivos de enfriamiento y calentamiento, ni se produce la interaccionan de dos fluidos con temperatura de efectos opuestos.
- No se contempla en el proyecto el empleo de ningún combustible sólido de origen fósil en las instalaciones térmicas.
- 1.6.2.3.7 Lista de los equipos consumidores de energía

Se incluye a continuación un resumen de todos los equipos proyectados, con su consumo de energía.

Sistema de expansión directa

- 1.6.2.4 Exigencia de seguridad
 - 1.6.2.4.1 Justificación del cumplimiento de la exigencia de seguridad en generación de calor y frío del apartado 3.4.1.
- 1.6.2.4.1.1 Condiciones generales

Los generadores de calor y frío utilizados en la instalación cumplen con lo establecido en la instrucción técnica 1.3.4.1.1 Condiciones generales del RITE.

1.6.2.4.1.2 Salas de máquinas

El ámbito de aplicación de las salas de máquinas, así como las características comunes de los locales destinados a las mismas, incluyendo sus dimensiones y ventilación, se ha dispuesto según la instrucción técnica 1.3.4.1.2 Salas de máquinas del RITE.

1.6.2.4.1.3 Chimeneas

La evacuación de los productos de la combustión de las instalaciones térmicas del edificio se realiza de acuerdo a la instrucción técnica 1.3.4.1.3 Chimeneas, así como su diseño y dimensionamiento y la posible evacuación por conducto con salida directa al exterior o al patio de ventilación.

1.6.2.4.1.4 Almacenamiento de biocombustibles sólidos

No se ha seleccionado en la instalación ningún productor de calor que utilice biocombustible.

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

1.6.2.4.2 Justificación del cumplimiento de la exigencia de seguridad en las redes de tuberías y conductos de calor y frío del apartado 3.4.2.

1.6.2.4.2.1 Alimentación

La alimentación de los circuitos cerrados de la instalación térmica se realiza mediante un dispositivo que sirve para reponer las pérdidas de agua.

El diámetro de la conexión de alimentación se ha dimensionado según la siguiente tabla:

Potencia térmica nominal	Calor	Frio
(kW)	DN (mm)	DN (mm)
P ≤ 70	15	20
70 < P ≤ 150	20	25
150 < P ≤ 400	25	32
400 < P	32	40

1.6.2.4.2.2 Vaciado y purga

Las redes de tuberías han sido diseñadas de tal manera que pueden vaciarse de forma parcial y total. El vaciado total se hace por el punto accesible más bajo de la instalación con un diámetro mínimo según la siguiente tabla:

Potencia térmica nominal	Calor	Frio
(kW)	DN (mm)	DN (mm)
P ≤ 70	20	25
70 < P ≤ 150	25	32
150 < P ≤ 400	32	40
400 < P	40	50

Los puntos altos de los circuitos están provistos de un dispositivo de purga de aire.

1.6.2.4.2.3 Expansión y circuito cerrado

Los circuitos cerrados de agua de la instalación están equipados con un dispositivo de expansión de tipo cerrado, que permite absorber, sin dar lugar a esfuerzos mecánicos, el volumen de dilatación del fluido.

El diseño y el dimensionamiento de los sistemas de expansión y las válvulas de seguridad incluidos en la obra se han realizado según la norma UNE 100155.

1.6.2.4.2.4 Dilatación, golpe de ariete, filtración

Las variaciones de longitud a las que están sometidas las tuberías debido a la variación de la temperatura han sido compensadas según el procedimiento establecido en la instrucción técnica 1.3.4.2.6 Dilatación del RITE. En nuestro caso se utilizaran liras de dilatación en aquellos tramos donde no se puedan compensar las dilataciones con las curvas propias de la red. Solamente en tramos de tubería donde no se puedan colocar liras por problemas de espacio se colocaran compensadores axiales de dilatación.

La prevención de los efectos de los cambios de presión provocados por maniobras bruscas de algunos elementos del circuito se realiza conforme a la instrucción técnica 1.3.4.2.7 Golpe de ariete del RITE.

Cada circuito se protege mediante un filtro con las propiedades impuestas en la instrucción técnica 1.3.4.2.8 Filtración del RITE.

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ
ANA LUISA DE GONZALO VIVANCOS

□ TIf: 619 869 982 - 659 081 538

1.6.2.4.2.5 Conductos de aire

El cálculo y el dimensionamiento de la red de conductos de la instalación, así como elementos complementarios (plenums, conexión de unidades terminales, pasillos, tratamiento de agua, unidades terminales) se ha realizado conforme a la instrucción técnica 1.3.4.2.10 Conductos de aire del RITE.

1.6.2.4.2.5.1 Calculo conductos

EDIFICIO I.E.S.

			Cond	luctos					
T Inicio	ramo Final	Q (m³/h)	w x h (mm)	V (m/s)	Φ (mm)	L (m)	ΔP ₁ (Pa)	ΔP (Pa)	D (Pa)
A155-PLANTA BAJA	N24-PLANTA BAJA	2100.0		5.9	355.0	13.92		20.15	
A155-PLANTA BAJA	N3-PLANTA BAJA	2100.0		5.9	355.0	10.33		58.98	
A155-PLANTA BAJA	N6-PLANTA BAJA	1950.0		5.5	355.0	2.51		61.59	
A155-PLANTA BAJA	N23-PLANTA BAJA	1950.0		5.5	355.0	9.50		13.83	
N3-PLANTA BAJA	N1-PLANTA BAJA	1400.0		3.9	355.0	1.32	21.79	86.58	6.94
N3-PLANTA BAJA	N1-PLANTA BAJA	700.0		4.0	250.0	5.54	21.79	93.52	
N3-PLANTA BAJA	N1-PLANTA BAJA				250.0	0.26		71.73	
N3-PLANTA BAJA	N4-PLANTA BAJA	700.0		4.0	250.0	2.75	21.79	90.97	2.56
N3-PLANTA BAJA	N4-PLANTA BAJA				250.0	0.56		69.18	
N5-PLANTA BAJA	N6-PLANTA BAJA				250.0	0.45		70.70	
N5-PLANTA BAJA	N6-PLANTA BAJA	650.0		3.7	250.0	4.69	14.00	84.70	4.72
N6-PLANTA BAJA	N2-PLANTA BAJA	1300.0		5.1	300.0	5.65	14.00	86.24	3.18
N6-PLANTA BAJA	N2-PLANTA BAJA	650.0		3.7	250.0	5.02	14.00	89.42	

ramo	1							
	Q (m³/h)	w x h (mm)	V (m/s)	Φ (mm)	L (m)	ΔP ₁ (Pa)	ΔP (Pa)	D (Pa)
		()		` ,	' '	(. 4)	` '	(/
A175-PLANTA BAJA	1500.0		5.9	300.0	1.08	13.39	14.67	
N10-PLANTA BAJA	1500.0		5.9	300.0	10.35		30.54	
N17-PLANTA BAJA	1330.0		6.0	280.0	4.40		30.13	
A176-PLANTA BAJA	1330.0		6.0	280.0	1.08	14.95	16.38	
N12-PLANTA BAJA	1425.0		5.6	300.0	1.67		32.34	
N11-PLANTA BAJA	75.0		1.2	150.0	0.58	6.62	38.49	33.60
N11-PLANTA BAJA				150.0	0.43		31.87	
N9-PLANTA BAJA	75.0		1.2	150.0	2.33	6.62	39.82	32.27
N9-PLANTA BAJA				150.0	0.38		33.20	
N14-PLANTA BAJA	1350.0		5.3	300.0	1.89	TRO Y ACI	43.01 REDITACIO	N 23/12/2
N13-PLANTA BAJA	675.0		3.8	250.	🧼 Д рос	UMENTOS PR	OFESIONALES	179500/52
N13-PLANTA BAJA				250.0	Autores0.128	RTA SERRANO	MARTIN E Z83	
N15-PLANTA BAJA	675.0		3.8	250.0	1.77	20.26	72.05	0.04
	N10-PLANTA BAJA N17-PLANTA BAJA A176-PLANTA BAJA N12-PLANTA BAJA N11-PLANTA BAJA N11-PLANTA BAJA N9-PLANTA BAJA N9-PLANTA BAJA N14-PLANTA BAJA N14-PLANTA BAJA N13-PLANTA BAJA	N2-PLANTA BAJA A175-PLANTA BAJA 1500.0 N10-PLANTA BAJA 1500.0 N17-PLANTA BAJA 1330.0 A176-PLANTA BAJA 1330.0 N12-PLANTA BAJA 1425.0 N11-PLANTA BAJA 75.0 N11-PLANTA BAJA 75.0 N9-PLANTA BAJA N9-PLANTA BAJA N14-PLANTA BAJA N14-PLANTA BAJA N14-PLANTA BAJA N14-PLANTA BAJA N13-PLANTA BAJA N13-PLANTA BAJA	N2-PLANTA BAJA A175-PLANTA BAJA 1500.0 N10-PLANTA BAJA 1500.0 N17-PLANTA BAJA 1330.0 A176-PLANTA BAJA 1330.0 N12-PLANTA BAJA 1425.0 N11-PLANTA BAJA 75.0 N11-PLANTA BAJA 75.0 N9-PLANTA BAJA N9-PLANTA BAJA N14-PLANTA BAJA N14-PLANTA BAJA N14-PLANTA BAJA N13-PLANTA BAJA 675.0	N2-PLANTA BAJA 1500.0 5.9 N10-PLANTA BAJA 1500.0 5.9 N17-PLANTA BAJA 1330.0 6.0 A176-PLANTA BAJA 1330.0 6.0 N12-PLANTA BAJA 1425.0 5.6 N11-PLANTA BAJA 75.0 1.2 N11-PLANTA BAJA 75.0 1.2 N9-PLANTA BAJA 75.0 5.3 N13-PLANTA BAJA 1350.0 5.3 N13-PLANTA BAJA 675.0 3.8 N13-PLANTA BAJA 675.0 3.8	N2-PLANTA BAJA 250.0 A175-PLANTA BAJA 1500.0 5.9 300.0 N10-PLANTA BAJA 1500.0 5.9 300.0 N17-PLANTA BAJA 1330.0 6.0 280.0 A176-PLANTA BAJA 1330.0 6.0 280.0 N12-PLANTA BAJA 1425.0 5.6 300.0 N11-PLANTA BAJA 75.0 1.2 150.0 N9-PLANTA BAJA 75.0 1.2 150.0 N9-PLANTA BAJA 1350.0 5.3 300.0 N13-PLANTA BAJA 675.0 3.8 250.0 N13-PLANTA BAJA 250.0	N2-PLANTA BAJA 1500.0 5.9 300.0 1.08 N10-PLANTA BAJA 1500.0 5.9 300.0 10.35 N17-PLANTA BAJA 1330.0 6.0 280.0 4.40 A176-PLANTA BAJA 1330.0 6.0 280.0 1.08 N12-PLANTA BAJA 1425.0 5.6 300.0 1.67 N11-PLANTA BAJA 75.0 1.2 150.0 0.58 N11-PLANTA BAJA 75.0 1.2 150.0 0.43 N9-PLANTA BAJA 75.0 1.2 150.0 0.38 N14-PLANTA BAJA 75.0 1.2 150.0 2.33 N9-PLANTA BAJA 75.0 1.2 150.0 0.38 N14-PLANTA BAJA 75.0 1.2 150.0 2.33 N9-PLANTA BAJA 75.0 5.3 300.0 1.89 REGIS N13-PLANTA BAJA 75.0 3.8 250.0 25.00 N13-PLANTA BAJA 75.0 3.8 250.0 25.00 N13-PLANTA BAJA 75.0 3.8 250.0 26.00 N13-PLANTA BAJA 75.0 250.0 26.00 N13-PLANTA BAJA 75.0 250.0 26.00 N13-PLANTA BAJA 75.0 250.0 26.00 N13-PLANTA BAJA 75.0 250.0 26.00 N13-PLANTA BAJA 75.0 250.0 26.00 N13-PLANTA BAJA 75.0 250.0 26.00 N13-PLANTA BAJA 75.0 250.0 26.00 N13-PLANTA BAJA 75.0 250.0 26.00 N13-PLANTA BAJA 75.00 N13-PLANTA BAJA 75.00 N13-PLANTA BAJA 75.00 N13-PLANTA BAJA 75.00 N13-PLANTA BAJA 75.00 N13-PLANTA BAJA 75.00 N13-PLANTA BAJA 75.00 N13-PLANTA BAJA 75.00 N13-PLANTA BAJA 75.00 N13-PLANTA BAJA 75.00 N13-PLANTA BAJ	N2-PLANTA BAJA A175-PLANTA BAJA 1500.0 5.9 300.0 1.08 13.39 N10-PLANTA BAJA 1500.0 5.9 300.0 10.35 N17-PLANTA BAJA 1330.0 6.0 280.0 4.40 A176-PLANTA BAJA 1330.0 6.0 280.0 1.08 14.95 N12-PLANTA BAJA 1425.0 5.6 300.0 1.67 N11-PLANTA BAJA 75.0 1.2 150.0 0.43 N9-PLANTA BAJA 75.0 1.2 150.0 0.38 N14-PLANTA BAJA N9-PLANTA BAJA N14-PLANTA BAJA N14-PLANTA BAJA N14-PLANTA BAJA N14-PLANTA BAJA N1350.0 3.8 250 REGISTRO Y ACION CON CONTRE PRESIDENCIMENTOS PRESI	N2-PLANTA BAJA 250.0 0.22 75.42 A175-PLANTA BAJA 1500.0 5.9 300.0 1.08 13.39 14.67 N10-PLANTA BAJA 1500.0 5.9 300.0 10.35 30.54 N17-PLANTA BAJA 1330.0 6.0 280.0 4.40 30.13 A176-PLANTA BAJA 1330.0 6.0 280.0 1.08 14.95 16.38 N12-PLANTA BAJA 1425.0 5.6 300.0 1.67 32.34 N11-PLANTA BAJA 75.0 1.2 150.0 0.58 6.62 38.49 N11-PLANTA BAJA 75.0 1.2 150.0 2.33 6.62 39.82 N9-PLANTA BAJA 1350.0 1.2 150.0 0.38 33.20 N13-PLANTA BAJA 1350.0 3.8 250.0 REGISTRO Y ACREDITACIO N13-PLANTA BAJA 675.0 3.8 250.0 Auditoreso @arta serrano Martinerk 83 And Luisa De Gonzalo Vivano

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tlf: 619 869 982 - 659 081 538

N14-PLANTA BAJA	N15-PLANTA BAJA			250.0	0.26		51.79	
N17-PLANTA BAJA	N16-PLANTA BAJA	600.0	3.4	250.0	1.61	11.93	42.95	18.87
N17-PLANTA BAJA	N16-PLANTA BAJA			250.0	0.28		31.02	
N17-PLANTA BAJA	N21-PLANTA BAJA	730.0	4.1	250.0	5.45		40.09	
N19-PLANTA BAJA	N18-PLANTA BAJA	600.0	3.4	250.0	6.98	11.93	61.81	
N19-PLANTA BAJA	N18-PLANTA BAJA			250.0	0.32		49.88	
N19-PLANTA BAJA	N20-PLANTA BAJA	65.0	1.0	150.0	2.06	3.05	48.65	13.16
N19-PLANTA BAJA	N20-PLANTA BAJA			150.0	0.26		45.60	
N21-PLANTA BAJA	N19-PLANTA BAJA	665.0	3.8	250.0	6.98		44.69	
N21-PLANTA BAJA	N22-PLANTA BAJA	65.0	1.0	150.0	2.01	3.05	44.07	17.74
N21-PLANTA BAJA	N22-PLANTA BAJA			150.0	0.30		41.02	
A177-PLANTA BAJA	A178-PLANTA BAJA	2100.0	5.9	355.0	2.93	11.37	14.19	
A177-PLANTA BAJA	N7-PLANTA BAJA	2100.0	5.9	355.0	9.56	19.56	46.33	1.31
A177-PLANTA BAJA	N7-PLANTA BAJA	1050.0	2.9	355.0	4.72	19.56	47.65	
A177-PLANTA BAJA	N7-PLANTA BAJA			355.0	0.28		28.09	

	Tramo			ductos			4.0	4D	
Inicio	Final	Q (m³/h)	w x h (mm)	V (m/s)	Φ (mm)	L (m)	ΔP ₁ (Pa)	ΔP (Pa)	D (Pa)
a177-Planta Baja	N8-PLANTA BAJA	1900.0		5.3	355.0	6.98	12.11	60.20	2.25
a177-Planta Baja	N8-PLANTA BAJA	950.0		3.7	300.0	4.33	12.11	62.45	
A177-PLANTA BAJA	N8-PLANTA BAJA				300.0	0.32		50.34	
a177-Planta Baja	A179-PLANTA BAJA	1900.0		5.3	355.0	2.93	30.51	34.19	
N23-PLANTA BAJA	N1-PLANTA PISO	1950.0		5.5	355.0	4.05		20.15	
N24-PLANTA BAJA	N2-PLANTA PISO	2100.0		5.9	355.0	4.05		27.43	
N1-PLANTA PISO	N1-CUBIERTA	1950.0		5.5	355.0	1.30		22.70	
N2-PLANTA PISO	N2-CUBIERTA	2100.0		5.9	355.0	1.30		30.37	
a101-Planta Piso	N7-PLANTA PISO	800.0		4.5	250.0	9.19		10.84	
a101-Planta Piso	N4-PLANTA PISO	800.0		4.5	250.0	1.08		22.17	
a101-planta Piso	N9-PLANTA PISO	720.0		4.1	250.0	6.50		24.45	
a101-Planta Piso	N6-PLANTA PISO	720.0		4.1	250.0	7.93		7.98	
N4-PLANTA PISO	N3-PLANTA PISO	100.0		0.9	200.0	7 71	11 76	35 27	20 36
N4-PLANTA PISO	N3-PLANTA PISO				200.0	m ∧	TRO Y ACI	REDITÂCTÓN	23/12/
N4-PLANTA PISO	N5-PLANTA PISO	700.0		4.0	2500	CONP		OFESION LES	179500/5
N4-PLANTA PISO	N5-PLANTA PISO				250.0	Cooleygi	o Oficial de	Arquite33a64d	e Murcia ^M
N6-PLANTA PISO	N3-CUBIERTA	720.0		4.1	250.0	Autores1 ผิด	RTA SERRANO	MARTINED:92	
N7-PLANTA PISO	N4-CUBIERTA	800.0		4.5	250.0	1.30	LUISA DE GO	NZALO YIYANGO	OS
N9-PLANTA PISO	N8-PLANTA PISO	630.0		3.6	250.0	0.88	13.15	42.19	

PLANTA PISO	N8-PLANTA PISO				250.0	0.42		29.04	
PLANTA PISO	N10-PLANTA PISO	90.0		1.4	150.0	2.51	5.85	31.92	10.28
PLANTA PISO	N10-PLANTA PISO				150.0	0.23		26.07	
I-PLANTA PISO	N18-PLANTA PISO	1100.0		5.0	280.0	1.13	16.24	39.84	3.90
I-PLANTA PISO	N18-PLANTA PISO	550.0		3.8	225.0	5.01	16.24	43.74	
I-PLANTA PISO	N18-PLANTA PISO				225.0	0.35		27.50	
I-PLANTA PISO	N5-CUBIERTA	1100.0		5.0	280.0	0.30		19.82	
2-PLANTA PISO	N13-PLANTA PISO	1300.0		5.9	280.0	6.46	28.95	66.13	5.72
2-PLANTA PISO	N13-PLANTA PISO	650.0		3.7	250.0	5.03	28.95	71.85	
2-PLANTA PISO	N13-PLANTA PISO				250.0	0.40		42.89	
2-PLANTA PISO	N6-CUBIERTA	1300.0		5.9	280.0	0.30		21.38	
4-PLANTA PISO	N17-PLANTA PISO	1100.0		5.0	280.0	0.91	16.24	38.80	3.98
4-PLANTA PISO	N17-PLANTA PISO	550.0		3.8	225.0	5.12	16.24	42.78	
4-PLANTA PISO	N17-PLANTA PISO				225.0	0.23		26.54	
4-PLANTA PISO	N7-CUBIERTA	1100.0		5.0	280.0	0.30		19.00	
5-PLANTA PISO	N16-PLANTA PISO	1300.0		5.9	280.0	6.28	28.95	67.32	5.75
5-PLANTA PISO	N16-PLANTA PISO	650.0		3.7	250.0	5.08	28.95	73.06	
5-PLANTA PISO	N16-PLANTA PISO				250.0	0.29		44.11	
5-PLANTA PISO	N8-CUBIERTA	1300.0		5.9	280.0	0.30		22.81	
9-PLANTA PISO	N22-PLANTA PISO	1100.0		5.0	280.0	1.00	16.24	39.70	4.13
9-PLANTA PISO	N22-PLANTA PISO	550.0		3.8	225.0	5.31	16.24	43.83	
9-PLANTA PISO	N22-PLANTA PISO				225.0	0.41		27.59	
9-PLANTA PISO	N9-CUBIERTA	1100.0		5.0	280.0	0.30		19.81	
)-PLANTA PISO	N21-PLANTA PISO	1300.0		5.9	280.0	6.39	28.95	65.99	5.86
)-PLANTA PISO	N21-PLANTA PISO	650.0		3.7	250.0	5.26	28.95	71.85	
	PLANTA PISO PLANTA PISO -PLANTA PISO -PLANTA PISO -PLANTA PISO -PLANTA PISO PLANTA PISO	PLANTA PISO PLANTA	PLANTA PISO N10-PLANTA PISO 90.0 PLANTA PISO N10-PLANTA PISO 1100.0 PLANTA PISO N18-PLANTA PISO 550.0 PLANTA PISO N18-PLANTA PISO 550.0 PLANTA PISO N18-PLANTA PISO 1100.0 PLANTA PISO N5-CUBIERTA 1100.0 PLANTA PISO N13-PLANTA PISO 1300.0 PLANTA PISO N13-PLANTA PISO 650.0 PLANTA PISO N13-PLANTA PISO 1300.0 PLANTA PISO N13-PLANTA PISO 1100.0 PLANTA PISO N6-CUBIERTA 1300.0 PLANTA PISO N17-PLANTA PISO 1100.0 PLANTA PISO N17-PLANTA PISO 550.0 PLANTA PISO N17-PLANTA PISO 550.0 PLANTA PISO N16-PLANTA PISO 1300.0 PLANTA PISO N16-PLANTA PISO 1300.0 PLANTA PISO N16-PLANTA PISO 650.0 PLANTA PISO N16-PLANTA PISO 1300.0 PLANTA PISO N16-PLANTA PISO 550.0 PLANTA PISO N16-PLANTA PISO 550.0 PLANTA PISO N22-PLANTA PISO 1300.0	PLANTA PISO N10-PLANTA PISO 90.0 PLANTA PISO N10-PLANTA PISO 1100.0 PLANTA PISO N18-PLANTA PISO 550.0 PLANTA PISO N18-PLANTA PISO 550.0 PLANTA PISO N18-PLANTA PISO 550.0 PLANTA PISO N18-PLANTA PISO 1100.0 PLANTA PISO N18-PLANTA PISO 1300.0 PLANTA PISO N13-PLANTA PISO 1300.0 PLANTA PISO N13-PLANTA PISO 650.0 PLANTA PISO N13-PLANTA PISO 1100.0 PLANTA PISO N17-PLANTA PISO 1100.0 PLANTA PISO N17-PLANTA PISO 550.0 PLANTA PISO N17-PLANTA PISO 550.0 PLANTA PISO N17-PLANTA PISO 1100.0 PLANTA PISO N16-PLANTA PISO 1300.0 PLANTA PISO N16-PLANTA PISO 1300.0 PLANTA PISO N16-PLANTA PISO 1300.0 PLANTA PISO N16-PLANTA PISO 550.0 PLANTA PISO N16-PLANTA PISO 1100.0 PLANTA PISO N22-PLANTA PISO 550.0 PLANTA PISO N22-PLANTA PISO 550.0 PLANTA PISO N22-PLANTA PISO 550.0 PLANTA PISO N22-PLANTA PISO 1100.0 PLANTA PISO N21-PLANTA PISO 1300.0	PLANTA PISO N10-PLANTA PISO 90.0 1.4 PLANTA PISO N10-PLANTA PISO 1100.0 5.0 1-PLANTA PISO N18-PLANTA PISO 550.0 3.8 1-PLANTA PISO N18-PLANTA PISO 550.0 3.8 1-PLANTA PISO N18-PLANTA PISO N18-PLANTA PISO 1100.0 5.0 1-PLANTA PISO N18-PLANTA PISO N18-PLANTA PISO N18-PLANTA PISO N18-PLANTA PISO N18-PLANTA PISO N13-PLANTA PISO N17-PLANTA PISO N18-PLANTA PISO N16-PLANTA	PLANTA PISO N10-PLANTA PISO 90.0 1.4 150.0 PLANTA PISO N10-PLANTA PISO 1100.0 150.0 150.0 N18-PLANTA PISO 1100.0 5.0 280.0 N18-PLANTA PISO 550.0 3.8 225.0 PLANTA PISO N18-PLANTA PISO 550.0 3.8 225.0 PLANTA PISO N5-CUBIERTA 1100.0 5.0 280.0 N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N13-PLANTA PISO N17-PLANTA PISO N16-PLANTA PIS	PLANTA PISO N10-PLANTA PISO 90.0 1.4 150.0 2.51 PLANTA PISO N10-PLANTA PISO 150.0 0.23 I-PLANTA PISO N18-PLANTA PISO 550.0 3.8 225.0 5.01 I-PLANTA PISO N18-PLANTA PISO 550.0 3.8 225.0 0.35 I-PLANTA PISO N18-PLANTA PISO 550.0 5.0 280.0 0.30 I-PLANTA PISO N18-PLANTA PISO 550.0 5.0 280.0 0.30 I-PLANTA PISO N5-CUBIERTA 1100.0 5.0 280.0 0.30 I-PLANTA PISO N13-PLANTA PISO 650.0 3.7 250.0 5.03 I-PLANTA PISO N13-PLANTA PISO 550.0 3.7 250.0 0.40 I-PLANTA PISO N13-PLANTA PISO 550.0 5.9 280.0 0.30 I-PLANTA PISO N17-PLANTA PISO 1100.0 5.0 280.0 0.91 I-PLANTA PISO N17-PLANTA PISO 550.0 3.8 225.0 5.12 I-PLANTA PISO N17-PLANTA PISO 550.0 3.8 225.0 0.23 I-PLANTA PISO N17-PLANTA PISO 550.0 3.8 225.0 5.12 I-PLANTA PISO N16-PLANTA PISO 550.0 3.7 250.0 5.08 I-PLANTA PISO N16-PLANTA PISO 550.0 3.7 250.0 5.08 I-PLANTA PISO N16-PLANTA PISO 550.0 5.9 280.0 0.30 I-PLANTA PISO N16-PLANTA PISO 550.0 5.9 280.0 0.30 I-PLANTA PISO N16-PLANTA PISO 550.0 5.9 280.0 0.30 I-PLANTA PISO N16-PLANTA PISO 550.0 5.9 280.0 0.30 I-PLANTA PISO N8-CUBIERTA 1300.0 5.9 280.0 0.30 I-PLANTA PISO N8-CUBIERTA 1300.0 5.0 280.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 3.8 225.0 5.31 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.8 225.0 5.31 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.8 225.0 5.31 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.8 225.0 5.31 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.8 225.0 5.31 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.8 225.0 5.31 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.8 225.0 5.31 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.8 225.0 5.31 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0 3.0 0.30 I-PLANTA PISO N2-PLANTA PISO 550.0 5.0	PLANTA PISO N10-PLANTA PISO 90.0 1.4 150.0 2.51 5.85 PLANTA PISO N10-PLANTA PISO 1100.0 5.0 280.0 1.13 16.24 PLANTA PISO N18-PLANTA PISO 550.0 280.0 0.30 PLANTA PISO N18-PLANTA PISO 1300.0 5.9 280.0 0.30 PLANTA PISO N13-PLANTA PISO 650.0 3.7 250.0 5.03 28.95 PLANTA PISO N17-PLANTA PISO 1100.0 5.0 280.0 0.30 PLANTA PISO N17-PLANTA PISO 550.0 3.8 225.0 5.01 16.24 16	PLANTA PISO N10-PLANTA PISO 90.0 1.4 150.0 2.51 5.85 31.92 26.07 PLANTA PISO N10-PLANTA PISO 1100.0 5.0 280.0 1.13 16.24 39.84 PLANTA PISO N18-PLANTA PISO 550.0 3.8 225.0 5.01 16.24 43.74 PLANTA PISO N18-PLANTA PISO 550.0 3.8 225.0 5.01 16.24 43.74 PLANTA PISO N18-PLANTA PISO 550.0 5.0 280.0 0.30 19.82 PLANTA PISO N5-CUBIERTA 1100.0 5.0 280.0 0.30 19.82 PLANTA PISO N13-PLANTA PISO 1300.0 5.9 280.0 6.46 28.95 66.13 PLANTA PISO N13-PLANTA PISO 550.0 3.7 250.0 5.03 28.95 71.85 PLANTA PISO N13-PLANTA PISO 550.0 5.9 280.0 0.30 21.38 PLANTA PISO N13-PLANTA PISO 1100.0 5.0 280.0 0.91 16.24 38.80 PLANTA PISO N17-PLANTA PISO 550.0 3.8 225.0 5.12 16.24 42.78 PLANTA PISO N17-PLANTA PISO 550.0 3.8 225.0 5.12 16.24 42.78 PLANTA PISO N17-PLANTA PISO 1300.0 5.9 280.0 0.30 19.00

			Cond	luctos					
Ti	ramo	Q	wxh	V	Φ	L	ΔP_1	ΔΡ	D
Inicio	Final	(m ³ /h)	(mm)	(m/s)	(mm)	(m)	(Pa)	(Pa)	(Pa)
N20-PLANTA PISO	N21-PLANTA PISO				250.0	0.44		42.90	
N20-PLANTA PISO	N10-CUBIERTA	1300.0		5.9	280.0	0.30		21.35	
N1-CUBIERTA	A4-CUBIERTA	1950.0		5.5	355.0	0.40	32.13	59.48	
N2-CUBIERTA	A3-CUBIERTA	2100.0		5.9	355.0	0.57	11.37	45.65	
N3-CUBIERTA	A5-CUBIERTA	720.0		4.1	250.0	0.40	4.38	17.56	
N4-CUBIERTA	A6-CUBIERTA	800.0		4.5	250.0	0.57	3.81	21.19	
N9-CUBIERTA	A13-CUBIERTA	1100.0		5.0	280.0	3.18		16.82	
A7-CUBIERTA	A9-CUBIERTA	1300.0		5.9	280.0	0.70	10.06	10.95	
A7-CUBIERTA	N8-CUBIERTA	1300.0		5.9	280.0	3.07		18.64	
A7-CUBIERTA	N7-CUBIERTA	1100.0		5.0	280.0	2.55		16.00	
A7-CUBIERTA	A11-CUBIERTA	1100.0		5.0	280.0	0.70	10.23	10.89	
A8-CUBIERTA	A10-CUBIERTA	1300.0		5.9	280.0	0.70	10.06	10.95	
A8-CUBIERTA	N6-CUBIERTA	1300.0		5.9	280.0	1.95		17.22	
A8-CUBIERTA	N5-CUBIERTA	1100.0		5.0	280.0	3.43		16.83	
A8-CUBIERTA	A12-CUBIERTA	1100.0		5.0	280.0	0.70	10.23	10.89	
A13-CUBIERTA	A14-CUBIERTA	1300.0		5.9	280.0	0.94	10.06	11.26	
A13-CUBIERTA	N10-CUBIERTA	1300.0		5.9	280.0	1.68		17.18	
A13-CUBIERTA	A15-CUBIERTA	1100.0		5.0	280.0	0.94	10.23	11.11	

				ı							
Abreviaturas utilizadas											
Q	Caudal	L	Longitud	ĺ							
wxh	Dimensiones (Ancho x Alto)	ΔP1	Pérdida de presión								
V	Velocidad	ΔΡ	Pérdida de plesión acumulada								
Φ	Diámetro equivalente.	D	Diferencia de respecto al dirusor o rella mas destavorable 23/12/								
			DE BOOMENTOOT KOTESIONALES 17000070								

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

1.6.2.4.2.5.2 Calculos difusores y rejillas

EDIFICIO I.E.S.

EDIFICIO I.E.S.		Difusor	es y rejilla	as					
Тіро	Φ (mm)	w x h (mm)	Q (m³/h)	A (cm²)	X (m)	P (dBA)	ΔP ₁ (Pa)	ΔP (Pa)	D (Pa)
A175-PLANTA BAJA: Rejilla de toma de		400 000	4500.0			00.0	10.00	44.7	0.00
aire A176-PLANTA BAJA: Rejilla de extracción		400x330 400x330	1500.0 1330.0	660.66 825.83		30.0 30.5	13.39 14.95	14.67 16.38	0.00
A179-PLANTA BAJA: Rejilla de extracción		400x330 400x330	1900.0	825.83		31.4	30.51	34.19	0.00
A178-PLANTA BAJA: Rejilla de toma de aire		600x330	2100.0	1003.86		27.5	11.37	14.19	0.00
A3-CUBIERTA: Rejilla de toma de aire		600x330	2100.0	1003.86		27.5	11.37	45.65	0.00
A4-CUBIERTA: Rejilla de extracción		400x330	1950.0	825.83		32.2	32.13	59.48	0.00
A6-CUBIERTA: Rejilla de toma de aire		400x330	800.0	660.66		20.9	3.81	21.19	0.00
A5-CUBIERTA: Rejilla de extracción		400x330	720.0	825.83		11.9	4.38	17.56	0.00
A11-CUBIERTA: Rejilla de extracción		400x330	1100.0	825.83		24.8	10.23	10.89	0.00
A9-CUBIERTA: Rejilla de toma de aire		400x330	1300.0	660.66		25.6	10.06	10.95	0.00
A12-CUBIERTA: Rejilla de extracción		400x330	1100.0	825.83		24.8	10.23	10.89	0.00
A10-CUBIERTA: Rejilla de toma de aire		400x330	1300.0	660.66		25.6	10.06	10.95	0.00
A15-CUBIERTA: Rejilla de extracción		400x330	1100.0	825.83		24.8	10.23	11.11	0.00
A14-CUBIERTA: Rejilla de toma de aire		400x330	1300.0	660.66		25.6	10.06	11.26	0.00
N3 -> N1, (6.68, 24.77), 1.32 m: Rejilla de impulsión		525x125	700.0	360.00	13.0	26.3	21.79	86.58	6.94
N3 -> N1, (6.68, 30.32), 6.87 m: Rejilla de impulsión		525x125	700.0	360.00	13.0	26.3	21.79	93.52	0.00
N3 -> N4, (6.68, 20.70), 2.75 m: Rejilla de impulsión		525x125	700.0	360.00	13.0	26.3	21.79	90.97	2.56
N5 -> N6, (1.64, 20.61), 0.45 m: Rejilla de retorno		525x125	650.0	280.00		30.7	14.00	84.70	4.72
N6 -> N2, (1.64, 25.07), 5.65 m: Rejilla de retorno		525x125	650.0	280.00		30.7	14.00	86.24	3.18
N6 -> N2, (1.64, 30.09), 10.67 m: Rejilla de retorno		525x125	650.0	280.00		30.7	14.00	89.42	0.00
N10 -> N11, (-13.30, 16.11), 0.58 m: Rejilla de impulsión		225x75	75.0	70.00	3.2	18.2	6.62	38.49	33.60
N12 -> N9, (-16.67, 16.05), 2.33 m: Rejilla de impulsión		225x75	75.0	70.00	3.2	18.2	6.62	39.82	32.27
N14 -> N13, (-16.80, 14.79), 1.83 m: Rejilla de impulsión		525x125	675.0	360.00	12.6	25.2	20.26	72.09	0.00
N14 -> N15, (-13.20, 14.79), 1.77 m: Rejilla de impulsión		525x125	675.0	360.00	12.6	25.2	20.26	72.05	0.04
N17 -> N16, (-6.08, 11.88), 1.61 m: Rejilla de retorno		525x125	600.0	280.00		28.2	11.93	42.95	18.87
N19 -> N18, (-23.91, 11.91), 6.98 m: Rejilla de retorno		525x125	600.0	280.00		28.2	11.93	61.81	0.00
N19 -> N20, (-18.51, 15.55), 2.06 m: Rejilla de retorno		225x75	65.0	60.00		17.5	3.05	48.65	13.16
N21 -> N22, (-11.53, 15.50), 2.01 m: Rejilla de retorno		225x75	65.0	60.00		17.5	3.05	44.07	17.74

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957 23/12/2015 Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez
C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tif: 61

116: 61

161

175: El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado.

Número Fecha

		Difusor	es y rejilla	ıs					
Тіро	Φ (mm)	w x h (mm)	Q (m³/h)	A (cm²)	X (m)	P (dBA)	ΔP₁ (Pa)	ΔP (Pa)	D (Pa)
A177 -> N7, (2.06, 40.62), 9.56 m: Rejilla de impulsión		425x225	1050.0	570.00	15.5	34.6	19.56	46.33	1.31
A177 -> N7, (6.78, 40.62), 14.28 m: Rejilla de impulsión		425x225	1050.0	570.00	15.5	34.6	19.56	47.65	0.00
A177 -> N8, (2.40, 49.23), 6.98 m: Rejilla de retorno		425x225	950.0	440.00		28.5	12.11	60.20	2.25
A177 -> N8, (6.73, 49.23), 11.30 m: Rejilla de retorno		425x225	950.0	440.00		28.5	12.11	62.45	0.00
N4 -> N3, (7.21, 21.21), 7.71 m: Rejilla de impulsión		225x75	100.0	70.00	4.2	26.9	11.76	35.27	20.36
N4 -> N5, (7.21, 24.53), 11.04 m: Rejilla de impulsión		525x125	700.0	360.00	13.0	26.3	21.79	55.63	0.00
N9 -> N8, (1.63, 24.59), 0.88 m: Rejilla de retorno		525x125	630.0	280.00		29.7	13.15	42.19	0.00
N9 -> N10, (1.63, 21.19), 2.51 m: Rejilla de retorno		225x75	90.0	60.00		27.4	5.85	31.92	10.28
N11 -> N18, (1.37, 40.73), 1.13 m: Rejilla de retorno		425x125	550.0	220.00		32.9	16.24	39.84	3.90
N11 -> N18, (1.37, 35.72), 6.14 m: Rejilla de retorno		425x125	550.0	220.00		32.9	16.24	43.74	0.00
N12 -> N13, (7.25, 40.79), 6.46 m: Rejilla de impulsión		425x125	650.0	290.00	13.5	30.6	28.95	66.13	5.72
N12 -> N13, (7.25, 35.76), 11.50 m: Rejilla de impulsión		425x125	650.0	290.00	13.5	30.6	28.95	71.85	0.00
N14 -> N17, (1.37, 43.85), 0.91 m: Rejilla de retorno		425x125	550.0	220.00		32.9	16.24	38.80	3.98
N14 -> N17, (1.37, 48.97), 6.02 m: Rejilla de retorno		425x125	550.0	220.00		32.9	16.24	42.78	0.00
N15 -> N16, (7.25, 43.83), 6.28 m: Rejilla de impulsión		425x125	650.0	290.00	13.5	30.6	28.95	67.32	5.75
N15 -> N16, (7.25, 48.90), 11.36 m: Rejilla de impulsión		425x125	650.0	290.00	13.5	30.6	28.95	73.06	0.00
N19 -> N22, (1.37, 33.12), 1.00 m: Rejilla de retorno		425x125	550.0	220.00		32.9	16.24	39.70	4.13
N19 -> N22, (1.37, 27.82), 6.30 m: Rejilla de retorno		425x125	550.0	220.00		32.9	16.24	43.83	0.00
N20 -> N21, (7.25, 33.12), 6.39 m: Rejilla de impulsión		425x125	650.0	290.00	13.5	30.6	28.95	65.99	5.86
N20 -> N21, (7.25, 27.85), 11.65 m: Rejilla de impulsión		425x125	650.0	290.00	13.5	30.6	28.95	71.85	0.00

	Abreviaturas utilizadas										
Φ	Diámetro	Р	Potencia sonora								
w x h	Dimensiones (Ancho x Alto)	ΔP_1	Pérdida de presión								
Q	Caudal	ΔΡ	Pérdida de presión acumulada								
Α	Área efectiva	D	Diferencia de presión respecto al difusor o rejilla más desfavorable								
Χ	Alcance										

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
MMPG Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

1.6.2.4.3 Justificación del cumplimiento de la exigencia de protección contra incendios del apartado 3.4.3.

Se cumple la reglamentación vigente sobre condiciones de protección contra incendios que es de aplicación a la instalación térmica.

Justificación del cumplimiento de la exigencia de seguridad y utilización del apartado 3.4.4. 1.6.2.4.4

Ninguna superficie con la que existe posibilidad de contacto accidental, salvo las superficies de los emisores de calor, tiene una temperatura mayor que 60 °C.

Las superficies calientes de las unidades terminales que son accesibles al usuario tienen una temperatura menor de 80°C.

La accesibilidad a la instalación, la señalización y la medición de la misma se ha diseñado conforme a la instrucción técnica 1.3.4.4 Seguridad de utilización del RITE.

1.6.2.5 Medidas adoptadas para la prevención de la legionela.

Ver el apartado 1.4.4.4 del anexo 1.4 "DB HS: SALUBRIDAD".

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Acquitectos de Murcia MMPG 23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha 659 081 538

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

HE 3 Eficiencia energética de las instalaciones de iluminación

EDIFICIO I.E.S.:

Zonas de no re	presentación: Administrativo en ger	neral									
VEEI máximo a	dmisible: 3.50 W/m²										
Planta	Recinto	Índic e del local	Número de puntos considerado s en el proyecto	Factor de mantenimient o previsto	Potencia total instalada en lámpara s + equipos aux.	Valor de eficiencia energética de la instalación	lluminanci a media horizontal mantenida	Índice de deslumbramient o unificado	Índice de rendimient o de color de las lámparas	Coeficient e de transmisión luminosa del vidrio de las ventanas del local	Ángulo de sombr a
		K	n	Fm	P (W)	VEEI (W/m²)	Em (lux)	UGR	Ra	T	θ (°)
PLANTA BAJA	DESPACHO PABELLON (Despacho)	1	112	0.80	228.00	3.00	300.61	15.0	85.0	0.08	0.0
PLANTA PISO	DESPACHO PPISO (Despacho)	1	172	0.80	276.00	3.00	423.07	14.0	85.0	0.05	0.0

Zonas de no r	epresentación: Aulas y laborator	ios									
VEEI máximo a	admisible: 4.00 W/m²										
Planta	Recinto	Índice del local	Número de puntos considerados en el proyecto	Factor de mantenimiento previsto	Potencia total instalada en lámparas + equipos aux.	Valor de eficiencia energética de la instalación	lluminancia media horizontal mantenida	Índice de deslumbramiento unificado	Índice de rendimiento de color de las lámparas	Coeficiente de transmisión luminosa del vidrio de las ventanas del local	Ángulo de sombra
		K	n	Fm	P (W)	VEEI (W/m²)	Em (lux)	UGR	Ra	T	θ (°)
PLANTA BAJA	AULA (Aula)	2	209	0.80	684.00	3.20	363.61	15.0	85.0	0.10 (*)	0.0
PLANTA BAJA	AULA DESDOBLE P.BAJA (Aula)	1	144	0.80	456.00	3.90	380.19	14.0	85.0	0.08 (*)	0.0
PLANTA PISO	AULA 1 (Aula)	2	209	0.80	684.00	3.20	372.14	14.0	85.0	0.08 (*)	0.0
PLANTA PISO	AULA 2 (Aula)	2	209	0.80	684.00	3.50	335.22	14.0	85.0	0.08 (*)	0.0
PLANTA PISO	AULA 3 (Aula)	2	209	0.80	684.00	3.40	352.42	14.0	85.0	0.08 (*)	0.0
PLANTA PISO	AULA DESDOBLE PPISO (Aula)	1	297	0.80	456.00	4.00	375.63	14.0	85.0	0.07 (*)	0.0
(*) En los recinto	os señalados, es obligatorio instalar u	ın sistem	a de aprovecha	miento de la luz na	atural.						

Zonas de no re	epresentación: Zonas comunes										
VEEI máximo a	admisible: 4.50 W/m²										
Planta	Recinto	Índice del local	Número de puntos considerados en el proyecto	Factor de mantenimiento previsto	Potencia total instalada en lámparas + equipos aux.	Valor de eficiencia energética de la instalación	lluminancia media horizontal mantenida	Índice de deslumbramiento unificado	Índice de rendimiento de color de las lámparas	Coeficiente de transmisión luminosa del vidrio de las ventanas del local	Ángulo de sombra
		K	_	Fm	P (W)	VEEI (W/m²)	Em (lux)	UGR	Ra	Т	θ (°)
PLANTA BAJA	PASO P.BAJA (Zona de circulación)	1	n 62	0.80	480.00	3.70	161.86	19.0	85.0	0.06	83.2
PLANTA BAJA	,	0	14	0.80	52.00	4.00	124.05	0.0	85.0	0.00	0.0
PLANTA BAJA	, , ,	0	15	0.80	52.00	4.00	123.53	0.0	85.0	0.00	0.0
PLANTA BAJA	, , ,	0	13	0.80	52.00	4.30	120.73	0.0	85.0	0.00	0.0
PLANTA BAJA	!	1	49	0.80	144.00	4.40	129.09	18.0	85.0	0.00	0.0
PLANTA BAJA	ASEO FEM. CANTINA (Aseo de planta)	1	49	0.80	144.00	4.50	131.16	18.0	85.0	0.00	0.0
PLANTA BAJA		1	84	0.80	396.00	3.70	254.67	19.0	85.0	0.01	90.0
PLANTA BAJA	VEST. FEM. PABELLON (Aseo de planta)	1	84	0.80	396.00	3.80	252.33	19.0	85.0	0.00	90.0
PLANTA BAJA	VEST. PROF. MASC (Aseo de planta)	0	12	0.80	104.00	4.40	197.69	0.0	85.0	0.00	0.0
PLANTA BAJA	VEST. PROF. FEM. (Aseo de planta)	0	12	0.80	104.00	4.40	197.67	0.0	85.0	0.00	0.0
PLANTA BAJA	PASO VESTUARIOS (Zona de circulación)	1	33	0.80	110.00	4.00	123.10	21.0	85.0	0.06	90.0
PLANTA PISO	PASO PPISO (Zona de circulación)	1	40	0.80	960.00	3.50	202.78	19.0	85.0	0.06	63.7
PLANTA PISO	PASO ASEOS (Zona de circulación)	0	22	0.80	110.00	4.00	180.76	18.0	85.0	0.00	0.0
PLANTA PISO	ASEO (Aseo de planta)	0	14	0.80	52.00	4.20	131.88	0.0	85.0	0.00	0.0
PLANTA PISO	ASEO MINUSV (Aseo de planta)	0	13	0.80	52.00	3.70	127.80	0.0	85.0	0.00	0.0
PLANTA PISO	ASEO PROF.PISO MASC (Aseo de planta)	0	15	0.80	52.00	4.30	125.11	0.0	85.0	0.00	0.0
PLANTA PISO	ASEO PROF.PISO FEM. (Aseo de planta)	0	24	0.80	52.00	4.30		REGISTRO	Y A®RED	ITACYON	0.023
								DE DOCUMENT			170

Zonas de no representación: Almacenes, archivos, salas técnicas y cocinas

VEEI máximo admisible: 5.00 W/m²

12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: Marta Serrano Martinez ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61 9 869 982 - 659 081 538

Planta	Recinto	Índice del local	Número de puntos considerados en el proyecto	Factor de mantenimiento previsto	Potencia total instalada en lámparas + equipos aux.	Valor de eficiencia energética de la instalación	lluminancia media horizontal mantenida	Índice de deslumbramiento unificado	Índice de rendimiento de color de las lámparas	Coeficiente de transmisión luminosa del vidrio de las ventanas del local	Ángulo de sombra
		K	n	Fm	P (W)	VEEI (W/m²)	Em (lux)	UGR	Ra	T	θ (°)
PLANTA BAJA	C.LIMPIEZA (Cuarto de limpieza)	0	15	0.80	36.00	4.20	104.63	0.0	85.0	0.00	0.0
PLANTA BAJA	ALMACEN PABELLON (Almacén)	1	36	0.80	165.00	5.00	134.28	18.0	85.0	0.00	0.0
PLANTA BAJA	ALMACEN CANTINA (Almacén)	1	42	0.80	288.00	4.70	197.97	16.0	85.0	0.04	90.0
PLANTA BAJA	CUARTO CPI (Sala de máquinas)	1	31	0.80	96.00	4.50	132.04	0.0	85.0	0.00	90.0
PLANTA BAJA	CUARTO CALDERAS (Sala de máquinas)	1	31	0.80	96.00	4.50	131.93	0.0	85.0	0.00	90.0

Zonas de no r	epresentación: Espacio	s depo	rtivos								
VEEI máximo	admisible: 5.00 W/m²										
Planta	Recinto	Índic e del local	Número de puntos considerados en el proyecto	Factor de mantenimiento previsto	Potencia total instalada en lámpara s + equipos aux.	Valor de eficiencia	lluminanci a media horizontal mantenida	Índice de deslumbramient o unificado	Índice de rendimiento de color de las lámparas	Coeficiente de transmisión luminosa del vidrio de las ventanas del local	
		K	n	Fm	P (W)	VEEI (W/m²)	Em (lux)	UGR	Ra	T	θ (°)
PLANTA BAJA	PABELLON (Gimnasio)	2	272	0.80	2746.00	1.90	214.42	21.0	85.0	0.00	0.0

Zonas de repres	entación: Hostelería y restaurac	ción									
VEEI máximo ad	lmisible: 10.00 W/m²										
Planta	Recinto	Índic e del local	Número de puntos considerados en el proyecto	Factor de mantenimiento previsto	Potencia total instalada en lámparas + equipos aux.	eficiencia	lluminancia media horizontal mantenida	Índice de deslumbramiento unificado	Índice de rendimiento de color de las lámparas	Coeficiente de transmisión luminosa del vidrio de las ventanas del local	Ángul de sombr
		K	n	Fm	P (W)	VEEI (W/m²)	Em (lux)	UGR	Ra	T	θ (°)
PLANTA BAJA	CANTINA PABELLON (Cafeteria)	1	209	0.80	700.00	3.40	281.72	21.0	85.0	0.20 (*)	37.5

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG 23/12/2015

1.6.3 HE 4 Contribución solar mínima de agua caliente sanitaria

1.6.3.2 EDIFICIO I.E.S.:

1.6.3.2.1 Emplazamiento de la instalación

Coordenadas geográficas:

Latitud:	37° 58' 12"
Longitud:	1° 13' 12'' O

1.6.3.2.2 Características de la superficie donde se instalarán los captadores. Orientación, inclinación y sombras

La orientación e inclinación de los captadores será la siguiente:

Orientación:	S(180°)
Inclinación:	37°

El campo de captadores se situará sobre la cubierta, según el plano de planta adjunto.

La orientación e inclinación del sistema de captación, así como las posibles sombras sobre el mismo, serán tales que las pérdidas sean inferiores a los límites especificados en la siguiente tabla:

Caso	Orientación e inclinación	Sombras	Total
General	10 %	10 %	15 %
Superposición	20 %	15 %	30 %
Integración arquitectónica	40 %	20 %	50 %

Cálculo de pérdidas de radiación solar por sombras

Conj. captación	Caso	Orientación e inclinación	Sombras	Total
1	General	0.01 %	0.29 %	0.30 %

1.6.3.2.3 Tipo de instalación

El sistema de captación solar para consumo de agua caliente sanitaria se caracteriza de la siguiente forma:

- Por el principio de circulación utilizado, clasificamos el sistema como una instalación con circulación forzada.
- Por el sistema de transferencia de calor, clasificamos nuestro sistema como una instalación con intercambiador de calor en el acumulador solar.
- Por el sistema de expansión, será un sistema cerrado.
- Por su aplicación, será una instalación para calentamiento de agua.

1.6.3.2.4 Captadores. Curvas de rendimiento

El tipo y disposición de los captadores que se han seleccionado se describe a continuación:

ı	Marca	Modelo	Disposición	Número total de captadores	Número total de baterías	
	"JUNKERS"	FKC-1 S	En paralelo	7	1 de 7 unidades	

El captador seleccionado debe poseer la certificación emitida por el organismo competente en la materia, según lo regulado en el RD 891/1980, de 14 de Abril, sobre homologación de los captadores solares y en la Orden de 28 de Julio de 1980, por la que se aprueban las normas e instrucciones técnicas complementarias para la homologación de los captadores solares, o la certificación o condiciones que considere la reglamentación que lo sustituya

superficie de apertura, caudal recomendado de circulación del fluido calopo

179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

1.6.3.2.5 Disposición de los captadores.

Los captadores se dispondrán en filas constituidas por el mismo número de elementos. Las filas de captadores se pueden conectar entre sí en paralelo, en serie o en serie-paralelo, debiéndose instalar válvulas de cierre en la entrada y salida de las distintas baterías de captadores y entre las bombas, de manera que puedan utilizarse para aislamiento de estos componentes durante los trabajos de mantenimiento, sustitución, etc.

Dentro de cada fila o batería los captadores se conectarán en paralelo. El número de captadores que se pueden conectar en paralelo se obtendrá teniendo en cuenta las limitaciones especificadas por el fabricante.

Se dispondrá de un sistema para asegurar igual recorrido hidráulico en todas las baterías de captadores. En general, se debe alcanzar un flujo equilibrado mediante el sistema de retorno invertido. Si esto no es posible, se puede controlar el flujo mediante mecanismos adecuados, como válvulas de equilibrado.

La entrada de fluido caloportador se efectuará por el extremo inferior del primer captador de la batería y la salida por el extremo superior del último.

La entrada tendrá una pendiente ascendente del 1% en el sentido de avance del fluido caloportador.

16327 Fluido caloportador

Para evitar riesgos de congelación en el circuito primario, el fluido caloportador incorporará anticongelante.

Como anticongelantes podrán utilizarse productos ya preparados o mezclados con agua. En ambos casos, deben cumplir la reglamentación vigente. Además, su punto de congelación debe ser inferior a la temperatura mínima histórica (-5°C) con un margen de seguridad de 5°C.

En cualquier caso, su calor específico no será inferior a 3 KJ/kgK (equivalente a 1 Kcal/kg°C).

Se deberán tomar las precauciones necesarias para prevenir posibles deterioros del fluido anticongelante cuando se alcanzan temperaturas muy altas. Estas precauciones deberán de ser comprobadas de acuerdo con UNE-EN 12976-2.

La instalación dispondrá de los sistemas necesarios para facilitar el llenado de la misma y asegurar que el anticongelante está perfectamente mezclado.

Es conveniente disponer un depósito auxiliar para reponer las posibles pérdidas de fluido caloportador en el circuito. No debe utilizarse para reposición un fluido cuyas características sean incompatibles con el existente en el circuito.

En cualquier caso, el sistema de llenado no permitirá las pérdidas de concentración producidas por fugas del circuito y resueltas mediante reposición con aqua de la red.

En este caso, se ha elegido como fluido caloportador una mezcla comercial de agua y propilenglicol al 24%, con lo que se garantiza la protección de los captadores contra rotura por congelación hasta una temperatura de -10°C, así como contra corrosiones e incrustaciones, ya que dicha mezcla no se degrada a altas temperaturas. En caso de fuga en el circuito primario, cuenta con una composición no tóxica y aditivos estabilizantes.

Las principales características de este fluido caloportador son las siguientes:

• Densidad: 1038.89 Kg/m3.

• Calor específico: 3.736 KJ/kgK.

• Viscosidad (60°C): 2.60 mPa s.

Depósito acumulador 1.6.3.2.8

1.6.3.2.8.1 Volumen de acumulación

El volumen de acumulación se ha seleccionado cumpliendo con las especificaciones del apartado 3.3.3.1: Generalidades de la sección HE-4 DB-HE CTE.

50 < (V/A) < 180

donde:

A: Suma de las áreas de los captadores.

V: Volumen de acumulación expresado en litros.

El modelo de acumulador usado se describe a continuación:

Modelo: VT-N 1250 FRM

• Diámetro: 950 mm

• Altura: 2040 mm

Vol. acumulación: 1250 l

659 081 538

23/12/2015

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

1.6.3.2.8.2 Superficie de intercambio

La superficie útil de intercambio cumple el apartado 3.3.4: Sistema de intercambio de la sección HE-4 DB-HE CTE, que prescribe que la relación entre la superficie útil de intercambio y la superficie total de captación no será inferior a 0.15.

El modelo de interacumulador seleccionado se describe a continuación:

interacumulador de suelo, de un serpentín, para producción de A.C.S., modelo VT-N 1250 FRM "CLIBER-SOLTHERM", de 1250 I de capacidad, de 950 mm de diámetro y 2040 mm de altura, con cuba de acero vitrificado, aislamiento térmico de paneles de poliestireno extruido de 90 mm de espesor libre de CFC, con envolvente de poliestireno acabado gris metalizado, protección contra la corrosión con ánodo de magnesio y termómetro

Para cada una de las tuberías de entrada y salida de agua del intercambiador de calor se debe instalar una válvula de cierre próxima al manguito correspondiente.

Conjuntos de captación

En la siguiente tabla pueden consultarse los volúmenes de acumulación y áreas de intercambio totales para cada conjunto de captación:

Conj. captación	Vol. acumulación (I)	Sup. captación (m²)
1	1250	15.61

1.6.3.2.9 Energía auxiliar

Para asegurar la continuidad en el abastecimiento de la demanda térmica en cualquier circunstancia, la instalación de energía solar debe contar con un sistema de energía auxiliar.

Este sistema de energía auxiliar debe tener suficiente potencia térmica para proporcionar la energía necesaria para la producción total de aqua caliente sanitaria, en ausencia de radiación solar. La energía auxiliar se aplicará en el circuito de consumo, nunca en el circuito primario de captadores.

El sistema de aporte de energía auxiliar con acumulación o en línea siempre dispondrá de un termostato de control sobre la temperatura de preparación. En el caso de que el sistema de energía auxiliar no disponga de acumulación, es decir, sea una fuente de calor instantánea, el equipo será capaz de regular su potencia de forma que se obtenga la temperatura de manera permanente, con independencia de cual sea la temperatura del agua de entrada al citado equipo.

Tipo de energía auxiliar: Gasóleo

El sistema de apoyo va a tener el mismo volumen de acumulación que el sistema solar dimensionado para el consumo medio diario del edificio, por lo que se garantiza que en caso de no funcionamiento del sistema solar, se podrá seguir funcionando de forma normal, ya que en el tramo de no funcionamiento del edificios (noche), el sistema de apoyo tiene suficiente capacidad para volver a disponer de todo el volumen de acumulación de reserva al dia siguiente.

1.6.3.2.10 Circuito hidráulico

El caudal de fluido portador se determina de acuerdo con las especificaciones del fabricante, según aparece en el apartado de cálculo.

1.6.3.2.10.1 Bombas de circulación

La bomba necesaria para el circuito primario debe tener el siguiente punto de funcionamiento:

Caudal (I/h)	Presión (Pa)
940.0	5688.1

Los materiales constitutivos de la bomba en el circuito primario son compatibles con la mezcla anticongelante.

1.6.3.2.10.2 Tuberías

Las tuberías utilizadas para el circuito primario tienen las siguientes características:

Material: cobre

Disposición: colocada superficialmente con aislamiento mediante coquilla de lana de vidrio protegida con emulsión asfáltica recubierta con chapa de aluminio

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

659 081 538

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

1.6.3.2.10.3 Vaso de expansión

El sistema de expansión que se emplea en el proyecto será cerrado, de tal forma que, incluso después de una interrupción del suministro de potencia a la bomba de circulación del circuito de captadores, justo cuando la radiación solar sea máxima, se pueda establecer la operación automática cuando la potencia esté disponible de nuevo.

El vaso de expansión para cada conjunto de captación se ha dimensionado conforme se describe en el anexo de cálculo.

1.6.3.2.10.4 **Purgadores**

Se utilizarán purgadores automáticos, ya que no está previsto que se forme vapor en el circuito. Debe soportar, al menos, la temperatura de estancamiento del captador y, en cualquier caso, hasta 150°C.

1.6.3.2.11 Sistema de control

El sistema de control asegura el correcto funcionamiento de la instalación, facilitando un buen aprovechamiento de la energía solar captada y asegurando el uso adecuado de la energía auxiliar. Se ha seleccionado una centralita de control para sistema de captación solar térmica "JUNKERS"/TDS 300, con sondas de temperatura con las siguientes funciones:

- Control de la temperatura del captador solar
- Control y regulación de la temperatura del acumulador solar
- Control y regulación de la bomba en función de la diferencia de temperaturas entre captador y acumulador.
- 1.6.3.2.12 Diseño y ejecución de la instalación

1.6.3.2.12.1 Montaje de los captadores

Se aplicará a la estructura soporte las exigencias básicas del Código Técnico de la Edificación en cuanto a seguridad.

El diseño y construcción de la estructura y sistema de fijación de los captadores debe permitir las necesarias dilataciones térmicas, sin transferir cargas que puedan afectar a la integridad de los captadores o al circuito hidráulico.

Los puntos de sujeción del captador serán suficientes en número, teniendo el área de apoyo y posición relativa adecuadas, de forma que no se produzcan flexiones en el captador superiores a las permitidas por el fabricante.

Los topes de sujeción de la estructura y de los captadores no arrojarán sombra sobre estos últimos.

En el caso que nos ocupa, el anclaje de los captadores al edificio se realizará mediante una estructura metálica proporcionada por el fabricante. La inclinación de los captadores será de: 37º.

1.6.3.2.12.2 Tuberías

El diámetro de las tuberías se ha dimensionado de forma que la velocidad de circulación del fluido sea inferior a 2 m/s y que la pérdida de carga unitaria sea inferior a 40.0 mm.c.a/m.

1.6.3.2.12.3 Válvulas

La elección de las válvulas se realizará de acuerdo con la función que desempeñan y sus condiciones extremas de funcionamiento (presión y temperatura), siguiendo preferentemente los criterios siguientes:

- Para aislamiento: válvulas de esfera.
- Para equilibrado de circuitos: válvulas de asiento.
- Para vaciado: válvulas de esfera o de macho.
- Para llenado: válvulas de esfera.
- Para purga de aire: válvulas de esfera o de macho.
- Para seguridad: válvulas de resorte.
- Para retención: válvulas de disco de doble compuerta, o de clapeta.

Las válvulas de seguridad serán capaces de derivar la potencia máxima del captador o grupo de captadores, incluso en forma de vapor, de manera que en ningún caso se sobrepase la máxima presión de trabajo del captador o del

Las válvulas de retención se situarán en la tubería de impulsión de la bomba y, en cualquier caso, aguas arriba de la válvula de intercepción.

Los purgadores automáticos de aire se construirán con los siguientes materiale

Cuerpo y tapa: fundición de hierro o de latón.

e REGISTRO PACREDITACIÓN atorio 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

659 081 538

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Fecha

- Mecanismo: acero inoxidable.
- Flotador y asiento: acero inoxidable.
- Obturador: goma sintética.

Los purgadores automáticos serán capaces de soportar la temperatura máxima de trabajo del circuito.

1.6.3.2.12.4 Vaso de expansión

Se utilizarán vasos de expansión cerrados con membrana. Los vasos de expansión cerrados cumplirán con el Reglamento de Recipientes a Presión y estarán debidamente timbrados. La tubería de conexión del vaso de expansión no se aislará térmicamente y tendrá el volumen suficiente para enfriar el fluido antes de alcanzar el vaso.

El volumen de dilatación, para el cálculo, será como mínimo igual al 4,3% del volumen total de fluido en el circuito primario.

Los vasos de expansión cerrados se dimensionarán de forma que la presión mínima en frío, en el punto más alto del circuito, no sea inferior a 1.5Kg/cm², y que la presión máxima en caliente en cualquier punto del circuito no supere la presión máxima de trabajo de los componentes.

Cuando el fluido caloportador pueda evaporarse bajo condiciones de estancamiento, hay que realizar un dimensionamiento especial para el volumen de expansión.

El depósito de expansión deberá ser capaz de compensar el volumen del medio de transferencia de calor en todo el grupo de captadores completo, incluyendo todas las tuberías de conexión entre captadores, incrementado en un 10%.

1.6.3.2.12.5 **Aislamientos**

El aislamiento de los acumuladores cuya superficie sea inferior a 2 m² tendrá un espesor mínimo de 30 mm. Para volúmenes superiores, el espesor mínimo será de 50 mm.

El espesor del aislamiento para el intercambiador de calor en el acumulador no será inferior a 20 mm.

Los espesores de aislamiento (expresados en mm) de tuberías y accesorios situados al interior o exterior, no serán inferiores a los valores especificados en: RITE.I.T.1.2.4.2.1.1.

Es aconsejable, aunque no forme parte de la instalación solar, el aislamiento de las tuberías de distribución al consumo de ACS. De esta forma se evitan pérdidas energéticas en la distribución, que disminuyen el rendimiento de la instalación de captación solar.

1.6.3.2.12.6 Purga de aire

El trazado del circuito favorecerá el desplazamiento del aire atrapado hacia los puntos altos.

Los trazados horizontales de tubería tendrán siempre una pendiente mínima del 1% en el sentido de la circulación.

En los puntos altos de la salida de baterías de captadores y en todos aquellos puntos de la instalación donde pueda quedar aire acumulado, se colocarán sistemas de purga constituidos por botellines de desaireación y purgador manual o automático. El volumen útil de cada botellín será superior a 100cm³.

Este volumen podrá disminuirse si se instala a la salida del circuito solar, y antes del intercambiador, un desaireador con purgador automático.

Las líneas de purga se colocarán de tal forma que no puedan helarse ni se pueda producir acumulación de agua entre líneas. Los orificios de descarga deberán estar dispuestos para que el vapor o medio de transferencia de calor que salga por las válvulas de seguridad no cause ningún riesgo a personas, a materiales o al medio ambiente.

Se evitará el uso de purgadores automáticos cuando se prevea la formación de vapor en el circuito. Los purgadores automáticos deberán soportar, al menos, la temperatura de estancamiento del captador.

1.6.3.2.12.7 Sistema de llenado

Los circuitos con vaso de expansión cerrado deben incorporar un sistema de llenado, manual o automático, que permita llenar el circuito primario de fluido caloportador y mantenerlo presurizado.

En general, es recomendable la adopción de un sistema de llenado automático con la inclusión de un depósito de fluido caloportador.

Para disminuir el riesgo de fallo, se evitarán los aportes incontrolados de agua de reposición a los circuitos cerrados, así como la entrada de aire (esto último incrementaría el riesgo de fallo por corrosión).

Es aconsejable no usar válvulas de llenado automáticas.

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

659 081 538

El Colegio Acredita la firma digital de los autores Número Fecha

1.6.3.2.12.8 Sistema eléctrico y de control

El sistema eléctrico y de control cumplirá el Reglamento Electrotécnico para Baja Tensión (REBT) en todos aquellos puntos que sean de aplicación.

Los cuadros serán diseñados siguiendo los requisitos de estas especificaciones y se construirán de acuerdo con el Reglamento Electrotécnico para Baja Tensión y con las recomendaciones de la Comisión Electrotécnica Internacional (CEI).

El usuario estará protegido contra posibles contactos directos e indirectos.

El rango de temperatura ambiente admisible para el funcionamiento del sistema de control será, como mínimo, el siguiente: -10°C a 50°C.

Los sensores de temperatura soportarán los valores máximos previstos para la temperatura en el lugar en que se ubiquen. Deberán soportar, sin alteraciones superiores a 1°C, una temperatura de hasta 100°C (instalaciones de ACS).

La localización e instalación de los sensores de temperatura deberá asegurar un buen contacto térmico con la zona de medición. Para consequirlo, en el caso de sensores de inmersión, se instalarán en contracorriente con el fluido.

Los sensores de temperatura deberán estar aislados contra la influencia de las condiciones ambientales que les rodean.

La ubicación de las sondas ha de realizarse de forma que éstas midan exactamente las temperaturas que se desea controlar, instalándose los sensores en el interior de vainas y evitándose las tuberías separadas de la salida de los captadores y las zonas de estancamiento en los depósitos.

Las sondas serán, preferentemente, de inmersión. Se tendrá especial cuidado en asegurar una adecuada unión entre las sondas por contacto y la superficie metálica.

1.6.3.2.12.9 Sistemas de protección

1.6.3.2.12.9.1 Protección contra sobrecalentamientos

El sistema deberá estar diseñado de tal forma que. con altas radiaciones solares prolongadas sin consumo de aqua caliente, no se produzcan situaciones en las cuales el usuario tenga que realizar alguna acción especial para llevar el sistema a su estado normal de operación.

Cuando el sistema disponga de la posibilidad de drenaje como protección ante sobrecalentamientos, la construcción deberá realizarse de tal forma que el agua caliente o vapor del drenaje no supongan peligro alguno para los habitantes y no se produzcan daños en el sistema ni en ningún otro material del edificio o vivienda.

Cuando las aguas sean duras, se realizarán las previsiones necesarias para que la temperatura de trabajo de cualquier punto del circuito de consumo no sea superior a 60°C.

1.6.3.2.12.9.2 Protección contra quemaduras

En sistemas de agua caliente sanitaria, donde la temperatura de agua caliente en los puntos de consumo pueda exceder de 60°C, deberá ser instalado un sistema automático de mezcla u otro sistema que limite la temperatura de suministro a 60°C, aunque en la parte solar pueda alcanzar una temperatura superior para compensar las pérdidas. Este sistema deberá ser capaz de soportar la máxima temperatura posible de extracción del sistema solar.

1.6.3.2.12.9.3 Protección de materiales y componentes contra altas temperaturas

El sistema deberá ser diseñado de tal forma que nunca se exceda la máxima temperatura permitida por cada material o componente.

1.6.3.2.12.9.4 Resistencia a presión

Se deberán cumplir los requisitos de la norma UNE-EN 12976-1.

En caso de sistemas de consumo abiertos con conexión a la red, se tendrá en cuenta la máxima presión de la misma para verificar que todos los componentes del circuito de consumo soportan dicha presión.

1.6.3.2.12.9.5 Prevención de flujo inverso

La instalación del sistema deberá asegurar que no se produzcan pérdidas energéticas relevantes debidas a flujos inversos no intencionados en ningún circuito hidráulico del mismo.

Como el sistema es por circulación forzada, se utiliza una válvula antirretorno para evitar flujos inversos.

1.6.3.2.12.9.6 Medidas adoptadas para la prevención de la legionela.

Ver el apartado 1.4.4.4 del anexo 1.4 "DB HS: SALUBRIDAD".

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

659 081 538

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Fecha

1.6.3.2.13 CÁLCULO

1.6.3.2.13.1 Circuito hidráulico

Edificio de nueva construcción situado en, Alcantarilla.

La orientación de los captadores se describe en la tabla siguiente. No existen en los alrededores obstáculos que puedan proyectar sombras sobre los captadores.

Batería	Orientación
1	S(180°)

1.6.3.2.13.1.1 Condiciones climáticas

Para la determinación de las condiciones climáticas (radiación global total en el campo de captadores, temperatura ambiente diaria y temperatura del agua de suministro de la red) se han utilizado los datos recogidos en el Pliego de Condiciones Técnicas de Instalaciones de Baja Temperatura editado por el IDAE.

Mes	Radiación global (MJul/m²)	Temperatura ambiente diaria (°C)	Temperatura de red (°C)
Enero	10.10	12	11
Febrero	14.80	12	11
Marzo	16.60	15	12
Abril	20.40	17	13
Mayo	24.20	21	15
Junio	25.60	25	17
Julio	27.70	28	19
Agosto	23.50	28	20
Septiembre	18.60	25	18
Octubre	13.90	20	16
Noviembre	9.80	16	13
Diciembre	8.10	12	11

1.6.3.2.13.1.2 Condiciones de uso

El consumo diario medio de la instalación se ha obtenido a partir de la tabla 3.1 (CTE DB HE-4) considerando, en este caso, un valor de 1250.0 I con una temperatura de consumo de 60 °C, calculado para unos consumos estimados diarios de:

- Almuerzos (Cantina) 200 x 1 l/almuerzo= 200 litros
- Duchas (vestuarios) 70 x 15 l/servicio = 1050 litros

A partir de los datos anteriores se puede calcular la demanda energética para cada mes. Los valores obtenidos se muestran en la siguiente tabla:

Mes	Ocupación (%)	Consumo (m³)	Temperatura de red (°C)	Salto térmico (°C)	Demanda (MJul)
Enero	100	38.8	11	49	7836.76
Febrero	100	35.0	11	49	7078.37
Marzo	100	38.8	12	48	7677.26
Abril	100	37.5	13	47	7265.06
Mayo	100	38.8	15	45	7188.22
Junio	100	37.5	17	43	6647.62
Julio	100	38.8	19	41	6550.20
Agosto	100	38.8	20	40	6390.70
Septiembre	100	37.5	18	42	6493.27
Octubre	100	38.8	16	44	7039.24
Noviembre	100	37.5	13	47	7275.25
Diciembre	100	38.8	11	49	7836.76

La descripción de los valores mostrados, para cada columna, es la siguiente:

- Ocupación: Estimación del porcentaje mensual de ocupación.
- Consumo: Se calcula mediante la siguiente formula:

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

$$C = \frac{\% O cup}{100} N \frac{(dias) \cdot Q}{mes} \frac{(m^3 / dia)}{acs}$$

siendo

- Temperatura de red: Temperatura de suministro de agua (valor mensual en °C).
- Demanda térmica: Expresa la demanda energética necesaria para cubrir el consumo necesario de agua caliente. Se calcula mediante la siguiente fórmula:

$$Q_{acs} = \rho \cdot C \cdot C_p \cdot \Delta T$$

siendo

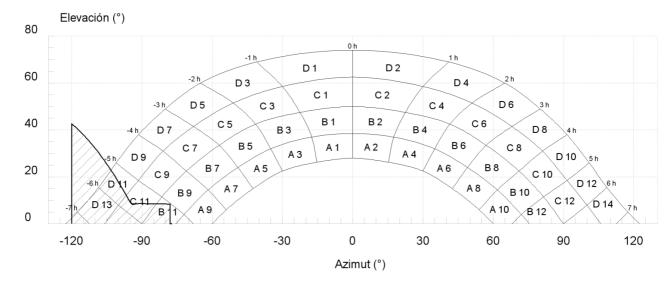
Qacs: Demanda de agua caliente (MJ).

ρ: Densidad volumétrica del agua (Kg/m³).

C: Consumo (m³).

Cp: Calor específico del agua (MJ/kg°C).

ΔT: Salto térmico (°C).


1.6.3.2.13.2 Determinación de la radiación

Para obtener la radiación solar efectiva que incide sobre los captadores se han tenido en cuenta los siguientes parámetros:

Orientación:	S(180°)
Inclinación:	37°

Las sombras proyectadas sobre los captadores son:

В1

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez
C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tlf: 61

Número D. Fecha

	B1 (inclinación 37.00°, orientación 0.00°)					
Porción	Factor de llenado (real)	Pérdidas (%)	Contribución (%)			
B 11	0.75 (0.65)	0.01	0.01			
C 11	0.50 (0.47)	0.12	0.06			
D 11	0.50 (0.54)	0.44	0.22			
D 13	1.00 (1.00)	0.00	0.00			
		TOTAL (%)	0.29			

1.6.3.2.13.3 Dimensionamiento de la superficie de captación

El dimensionamiento de la superficie de captación se ha realizado mediante el método de las curvas 'f' (F-Chart), que permite realizar el cálculo de la cobertura solar y del rendimiento medio para periodos de cálculo mensuales y anuales.

Se asume un volumen de acumulación equivalente, de forma aproximada, a la carga de consumo diario promedio. La superficie de captación se dimensiona para conseguir una fracción solar anual superior al 60%, tal como se indica el apartado 2.1, 'Contribución solar mínima', de la sección HE-4 DB-HE CTE.

El valor resultante para la superficie de captación es de 15.61 m², y para el volumen de captación de 1250 l.

Los resultados obtenidos se resumen en la siguiente tabla:

Mes	Radiación global (MJul/m²)	Temperatura ambiente diaria (°C)	Demanda (MJul)	Energía auxiliar (MJul)	Fracción solar (%)
Enero	10.10	12	7836.76	4585.93	41
Febrero	14.80	12	7078.37	3053.16	57
Marzo	16.60	15	7677.26	3110.82	59
Abril	20.40	17	7265.06	2440.49	66
Mayo	24.20	21	7188.22	1871.15	74
Junio	25.60	25	6647.62	1433.26	78
Julio	27.70	28	6550.20	782.36	88
Agosto	23.50	28	6390.70	1028.98	84
Septiembr e	18.60	25	6493.27	1638.05	75
Octubre	13.90	20	7039.24	2676.43	62
Noviembre	9.80	16	7275.25	4012.47	45
Diciembre	8.10	12	7836.76	5119.40	35

1632134 Cálculo de la cobertura solar

La instalación cumple la normativa vigente, ya que la energía producida no supera, en ningún mes, el 110% de la demanda de consumo, y no hay una demanda superior al 100% para tres meses consecutivos.

La cobertura solar anual conseguida mediante el sistema es igual al 63%.

1.6.3.2.13.5 Selección de la configuración básica

La instalación consta de un circuito primario cerrado (circulación forzada) dotado de un sistema de captación con una superficie total de captación de 16 m² y de un interacumulador colectivo. Se ha previsto, además, la instalación de un sistema de energía auxiliar.

1.6.3.2.13.6 Selección del fluido caloportador

La temperatura histórica en la zona es de -5°C. La instalación debe estar preparada para soportar sin congelación una temperatura de -10°C (5º menos que la temperatura mínima histórica). Para ello, el porcentaje en peso de anticongelante será de 24% con un calor específico de 3.736 KJ/kgK y una viscosidad de 2.601080 mPa s a una temperatura de 60°C.

Diseño del sistema de captación 1.6.3.2.13.7

El sistema de captación estará formado por elementos del tipo FKC-1 S ("JUNKERS"), cuya curva de rendimiento INTA es:

$$\eta = \eta_0 - a_1 - a_1 - a_1$$

siendo

η₀: Factor óptico (0.77).

23/12/2015

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

a₁: Coeficiente de pérdida (3.68).

te: Temperatura media (°C).

ta: Temperatura ambiente (°C).

I: Irradiación solar (W/m²).

La superficie de apertura de cada captador es de 2.23 m².

La disposición del sistema de captación queda completamente definida en los planos del proyecto.

1.6.3.2.13.8 Diseño del sistema intercambiador-acumulador

El volumen de acumulación se ha seleccionado cumpliendo con las especificaciones del apartado 3.3.3.1: Generalidades de la sección HE-4 DB-HE CTE.

donde:

A: Suma de las áreas de los captadores.

V: Volumen de acumulación expresado en litros.

Se ha utilizado el siguiente interacumulador:

interacumulador de suelo, de un serpentín, para producción de A.C.S., modelo VT-N 1250 FRM "CLIBER-SOLTHERM", de 1250 I de capacidad, de 950 mm de diámetro y 2040 mm de altura, con cuba de acero vitrificado, aislamiento térmico de paneles de poliestireno extruido de 90 mm de espesor libre de CFC, con envolvente de poliestireno acabado gris metalizado, protección contra la corrosión con ánodo de magnesio y termómetro

La relación entre la superficie útil de intercambio del intercambiador incorporado y la superficie total de captación es superior a 0.15 e inferior o igual a 1.

1.6.3.2.13.9 Diseño del circuito hidráulico

1.6.3.2.13.9.1 Cálculo del diámetro de las tuberías

Para el circuito primario de la instalación se utilizarán tuberías de cobre.

El diámetro de las tuberías se selecciona de forma que la velocidad de circulación del fluido sea inferior a 2 m/s. El dimensionamiento de las tuberías se realizará de forma que la pérdida de carga unitaria en las mismas nunca sea superior a 40.00 mm.c.a/m.

1.6.3.2.13.9.2 Cálculo de las pérdidas de carga de la instalación

Deben determinarse las pérdidas de carga en los siguientes componentes de la instalación:

- Captadores
- Tuberías (montantes y derivaciones a las baterías de captadores del circuito primario).
- Intercambiador

FÓRMULAS UTILIZADAS

Para el cálculo de la pérdida de carga, AP, en las tuberías, utilizaremos la formulación de Darcy-Weisbach que se describe a continuación:

$$\Delta P = \lambda \cdot \frac{L}{D} \frac{v^2}{2.9,81}$$

siendo

ΔP: Pérdida de carga (m.c.a).

λ: Coeficiente de fricción

L: Longitud de la tubería (m).

D: Diámetro de la tubería (m).

v: Velocidad del fluido (m/s).

Para calcular las pérdidas de carga, se le suma a la longitud real de la tuber PREGISTROPACREDITAL PONIUD 23/12/2015 a las singularidades del circuito (codos, tés, válvulas, etc.). Ésta longitud tubería que provocaría una pérdida de carga igual a la producida por dicha

De forma aproximada, la longitud equivalente se calcula como un porcentaje caso, se ha asumido un porcentaje igual al 15%.

MOUNT DE BORDMENTOS PROFESIONALES 179500/52957 de la longitiono ficalalo de l'Artquite de los Edecidiercia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

El coeficiente de fricción, λ, depende del número de Reynolds.

Cálculo del número de Reynolds: (Re)

$$R_e = \frac{(\rho \cdot v \cdot D)}{\mu}$$

siendo

Re: Valor del número de Reynolds (adimensional).

ρ: 1000 Kg/m³

v: Velocidad del fluido (m/s).

D: Diámetro de la tubería (m).

μ: Viscosidad del agua (0.001 poises a 20°C).

Cálculo del coeficiente de fricción (λ) para un valor de Re comprendido entre 3000 y 105 (éste es el caso más frecuente para instalaciones de captación solar):

$$\lambda = \frac{0.32}{R_e^{0.25}}$$

Como los cálculos se han realizado suponiendo que el fluido circulante es agua a una temperatura de 60°C y con una viscosidad de 2.601080 mPa s, los valores de la pérdida de carga se multiplican por el siguiente factor de corrección:

$$factor = \sqrt[4]{\frac{\mu_{FC}}{\mu_{agua}}}$$

1.6.3.2.13.9.3 Bomba de circulación

La bomba de circulación necesaria en el circuito primario se debe dimensionar para una presión disponible igual a las pérdidas totales del circuito (tuberías, captadores e intercambiadores). El caudal de circulación tiene un valor de 940.00 l/h

La pérdida de presión en el conjunto de captación se calcula mediante la siguiente fórmula:

$$\Delta P_T = \frac{\Delta P \cdot N \cdot (N+1)}{4}$$

siendo

ΔP_T: Pérdida de presión en el conjunto de captación.

ΔP: Pérdida de presión para un captador

N: Número total de captadores

Por tanto, los valores para la pérdida de presión total en el circuito primario y para la potencia de la bomba de circulación, de cada conjunto de captación, son los siguientes:

Conj. captación	Pérdida de presión total (Pa)	Potencia de la bomba de circulación (kW)
1	5698	0.07

La potencia de cada bomba de circulación se calcula mediante la siguiente expresión:

$$P = C \cdot \Delta p$$

siendo

P: Potencia eléctrica (kW)

C: Caudal (I/s)

Δp: Pérdida total de presión de la instalación (Pa).

En este caso, utilizaremos una bomba de rotor húmedo montada en línea.

Según el apartado 3.4.4 'Bombas de circulación' de la sección HE-4 DB-HE QTE, la potencia de Arquitectos de Murcia MMPG bomba de circulación no deberá superar los valores siguientes:

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES

23/12/2015 179500/52957

Tipo de sistema	Potencia eléctrica de la bomba de circulación
Sistemas pequeños	50 W o 2 % de la potencia calorífica máxima que pueda suministrar el grupo de captadores.
Sistemas grandes	1% de la potencia calorífica máxima que pueda suministrar el grupo de captadores.

1.6.3.2.13.9.4 Vaso de expansión

El valor teórico del coeficiente de expansión térmica, calculado según la norma UNE 100.155, es de 0.089. El vaso de expansión seleccionado tiene una capacidad de 8 l.

Para calcular el volumen necesario se ha utilizado la siguiente fórmula:

$$V_{t} = V \cdot C_{e} \cdot C_{p}$$

siendo

Vt: Volumen útil necesario (l).

V: Volumen total de fluido de trabajo en el circuito (I)

Ce: Coeficiente de expansión del fluido.

C_p: Coeficiente de presión

El cálculo del volumen total de fluido en el circuito primario de cada conjunto de captación se desglosa a continuación:

Conj. captación	Vol. tuberías (I)	Vol. captadores (I)	Vol. intercambiadores (I)	Total (I)
1	13.24	6.02	37.50	56.76

Con los valores de la temperatura mínima (-5°C) y máxima (140°C), y el valor del porcentaje de glicol etilénico en agua (24%) se obtiene un valor de 'Ce' igual a 0.089. Para calcular este parámetro se han utilizado las siguientes expresiones:

$$C_e = fc \cdot \left(-95 + 1.2 \cdot t\right) \cdot 10^{-3}$$

siendo

fc: Factor de correlación debido al porcentaje de glicol etilénico.

t: Temperatura máxima en el circuito.

El factor 'fc' se calcula mediante la siguiente expresión:

$$fc = a \cdot (1.8 \cdot t + 32)^b$$

siendo

 $a = -0.0134 \cdot (G^2 - 143.8 \cdot G + 1918.2) = 13.39$

 $b = 0.00035 \cdot (G^2 - 94.57 \cdot G + 500.) = -0.42$

G: Porcentaje de glicol etilénico en agua (24%).

El coeficiente de presión (Cp) se calcula mediante la siguiente expresión:

$$C_p = \frac{P_{\text{max}}}{P_{\text{max}} - P_{\text{min}}}$$

siendo

Pmax: Presión máxima en el vaso de expansión.

Pmin: Presión mínima en el vaso de expansión.

El punto de mínima presión de la instalación corresponde a los captadores máxima. Para evitar la entrada de aire, se considera una presión mínima acentada de Arquitectos de Murcia MMPG

REGISTRO Y ACREDITACION 23/12/2015 MEDICULAR TO PHOPESTON ALES CO 179500/52957

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado.

La presión mínima del vaso debe ser ligeramente inferior a la presión de tarado de la válvula de seguridad (aproximadamente 0.9 veces). Por otro lado, el componente crítico respecto a la presión es el captador solar, cuya presión máxima es de 6 bar (sin incorporar el kit de fijación especial).

A partir de las presiones máxima y mínima, se calcula el coeficiente de presión (Cp). En este caso, el valor obtenido es de 1.3.

1.6.3.2.13.9.5 Purgadores y desaireadores

El sistema de purga está situado en la batería de captadores. Por tanto, se asume un volumen total de 100.0 cm³.

1.6.3.2.13.10 Sistema de regulación y control

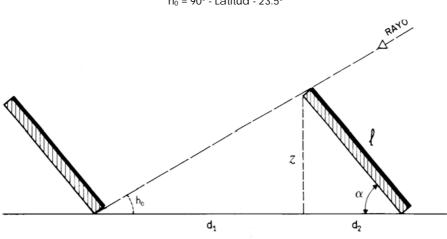
El sistema de regulación y control tiene como finalidad la actuación sobre el régimen de funcionamiento de las bombas de circulación, la activación y desactivación del sistema antiheladas, así como el control de la temperatura máxima en el acumulador. En este caso, el regulador utilizado es el siguiente: TDS 300, "JUNKERS".

1.6.3.2.13.11 Cálculo de la separación entre filas de captadores

La separación entre filas de captadores debe ser igual o mayor que el valor obtenido mediante la siguiente expresión:

 $d = k \cdot h$

d: Separación entre las filas de captadores.


h: Altura del captador.

(Ambas magnitudes están expresadas en las mismas unidades)

'k' es un coeficiente cuyo valor se obtiene, a partir de la inclinación de los captadores con respecto al plano horizontal, de la siguiente tabla:

Valor del coefic	iente d	le sepa	ración	entre l	as filas	de ca	ptador	es (k)
Inclinación (°)	20	25	30	35	40	45	50	55
Coeficiente k	1.532	1.638	1.732	1.813	1.879	1.932	1.970	1.992

A continuación se describe el cálculo de la separación mínima entre filas de captadores (valor mínimo de la separación para que no se produzcan sombras). En primer lugar, hay que determinar el día más desfavorable. En nuestro caso, como la instalación se diseña para funcionar durante todo el año, el día más desfavorable corresponde al 21 de Diciembre, cuando, al mediodía, la altura solar (h₀) tiene un valor de:

 $h_0 = 90^{\circ} - Latitud - 23.5^{\circ}$

La distancia entre captadores (d) es igual a:

 $d = d_1 + d_2 = I (sen \alpha / tan h_0 + cos \alpha)$

siendo

I: Altura de los captadores en metros.

α: Ángulo de inclinación de los captadores.

h₀: Altura solar mínima (calculada según la fórmula anterior).

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61 El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

Por tanto, la separación mínima entre baterías de captadores será de 3.81 m.

1.6.3.2.13.12 Aislamiento

El aislamiento térmico del circuito primario se realizará mediante coquilla flexible de espuma elastomérica. El espesor del aislamiento será de 30 mm en las tuberías exteriores y de 20 mm en las interiores.

1.6.4 HE 5 Contribución fotovoltaica mínima de energía eléctrica

Los edificios son de uso docente por lo que, según el punto 1.1 (ámbito de aplicación) de la Exigencia Básica HE 5, no necesita instalación solar fotovoltaica.

Murcia, octubre de 2015

Fdo. Ana Gonzalo Vivancos y Marta Serrano Martínez

Arquitectas

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Fecha 869 982 - 659 081 538

ANEXO 2: CALIFICACION ENERGETICA

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

2 ANEXO 2: CALIFICACION ENERGETICA

Autores: MARTA SERRANO MARTINEZ

ANA LUISA DE GONZALO VIVANCOS
Página: 52

ŢŢ.

EDIFICIO DEL I.E.S.

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG

Autores: Marta Serrano Martinez ana Luisa de Gonzalo Vivancos

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia • Tlf: 61

Calificación Energética

Proyecto: BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Fecha: 28/10/2015

BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Localidad

Comunidad

ALCANTARILLA

MURCIA

1. DATOS GENERALES

Nombre del Proyecto	
BYE AMPLIACION Y NUEVO CENTRO INSTITU	TO SANJE
Localidad	Comunidad Autónoma
ALCANTARILLA	MURCIA
Dirección del Proyecto	
AVDA. FERNANDO III EL SANTO- KM. 1,5	
Autor del Proyecto	
SERRANO Y GONZALO ARQUITECTAS, S.L.P.	
Autor de la Calificación	
E-mail de contacto	Teléfono de contacto
Tipo de edificio	
Terciario	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Localidad

ALCANTARILLA

Comunidad

MURCIA

2. DESCRIPCIÓN GEOMÉTRICA Y CONSTRUCTIVA

2.1. Espacios

Nombre	Planta	Uso	Clase higrométria	Área (m²)	Altura (m)
P01_E01 Espacio0	P01	Nivel de estanqueidad 2	3	627,39	1,05
P02_E01_PABELLON1	P02	Nivel de estanqueidad 3	3	50,32	4,25
P02_E02_PABELLON8	P02	Intensidad Alta - 24h	3	774,54	7,65
P02_E03_PASO_VEST	P02	Intensidad Baja - 8h	3	16,23	4,25
P02_E04_PABELLON2	P02	Intensidad Baja - 8h	3	91,68	4,25
P02_E05_PABELLON4	P02	Nivel de estanqueidad 3	3	30,83	4,25
P02_E06_PABELLON6	P02	Intensidad Baja - 8h	3	52,54	4,25
P02_E07_ALMACEN_C	P02	Nivel de estanqueidad 3	3	31,78	4,25
P02_E08_PABELLON	P02	Intensidad Alta - 24h	3	123,29	4,25
P02_E09_CANTINA_P	P02	Intensidad Alta - 24h	3	81,00	4,25
P02_E10 Espacio0	P02	Nivel de estanqueidad 3	3	16,51	4,25
P02_E11_ASC_PBAJA	P02	Nivel de estanqueidad 4	3	3,59	4,25
P02_E12 Espacio0	P02	Nivel de estanqueidad 3	3	2,20	4,25
P02_E13 Espacio0	P02	Nivel de estanqueidad 3	3	2,25	4,25
P03_E01_PABELLON2	P03	Intensidad Baja - 8h	3	182,58	4,00
P03_E02_PABELLON	P03	Intensidad Alta - 24h	3	238,59	4,00
P03_E03_ASCEN_PIS	P03	Nivel de estanqueidad 4	3	3,32	4,00
P03_E04 Espacio0	P03	Nivel de estanqueidad 3	3	1,76	4,00
P03_E05 Espacio0	P03	Nivel de estanqueidad 3	3	3,73	4,00

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

23/12/2015

Toyecto	
	BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Localidad Comunidad ALCANTARILLA

2.2. Cerramientos opacos

2.2.1 Materiales

Nombre	K (W/mK)	e (kg/m³)	ср (J/kgK)	R (m²K/W)	Z (m²sPa/Kg)	Just.
M02_1_2_pie_LM_metrico_o_cat	1,042	2170,00	1000,00	-	10	SI
M03_Aislamiento_entre_montan	0,036	40,00	1000,00	-	1	SI
M04_Enfoscado_de_cemento_	1,300	1900,00	1000,00	-	10	SI
M05_FR_Entrevigado_de_hormig	1,944	1610,00	1000,00	-	10	SI
M06_Guarnecido_de_yeso_	0,570	1150,00	1000,00	-	6	SI
M07_Hoja_de_particion_interi	0,885	1100,00	1000,00	-	10	SI
M08_Hoja_de_particion_interi	0,438	930,00	1000,00	ı	10	SI
M09_Hoja_de_particion_interi	0,522	900,00	1000,00	-	10	SI
M10_Hoja_de_particion_interi	0,563	930,00	1000,00	-	10	SI
M11_Hoja_exterior_de_fachada	2,800	2600,00	1000,00	-	10000	SI
M12_Hoja_exterior_de_fachada	0,438	930,00	1000,00	-	10	SI
M13_Hoja_interior_de_fachada	0,563	930,00	1000,00	-	10	SI
M14_Hoja_interior_de_fachada	0,438	930,00	1000,00	-	10	SI
M15_Hoja_interior_de_fachada	0,885	1100,00	1000,00	-	10	SI
M16_Morteros_monocapa_	0,700	1300,00	1000,00	-	10	SI
M17_Particion_virtual	0,050	100,00	1000,00	-	1	SI
M18_Polietileno_reticulado	0,033	27,00	1000,00	-	100000	SI
M19_panel_de_lana_de_roca	0,036	40,00	1000,00	-	1	SI
M20_placa_de_yeso_laminado	0,250	825,00	1000,00	-	4	SI
EPS Poliestireno Expandido [0.029 W/[mK]]	0,029	30,00	1000,00	-	20	SI
MW Lana mineral [0.04 W/[mK]]	0,041	40,00	1000,00	-	1	SI

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

MURCIA

Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Localidad

Comunidad

ALCANTARILLA

MURCIA

Nombre	K (W/mK)	e (kg/m³)	ср (J/kgK)	R (m²K/W)	Z (m²sPa/Kg)	Just.
PUR Proyección con CO2 celda cerrada [0.	0,035	50,00	1000,00	-	100	SI
Plaqueta o baldosa cerámica	1,000	2000,00	800,00	-	30	
Cámara de aire sin ventilar horizontal 10 cm	-	-	-	0,18	-	
Cámara de aire sin ventilar vertical 10 cm	-	-	-	0,19	-	
Cámara de aire sin ventilar vertical 5 cm	-	-	-	0,18	-	
Enlucido de yeso d < 1000	0,400	900,00	1000,00	-	6	
FU Entrevigado de hormigón -Canto 300 mm	1,422	1240,00	1000,00	-	80	
BH convencional espesor 200 mm	0,923	860,00	1000,00	-	10	
Hormigón armado 2300 < d < 2500	2,300	2400,00	1000,00	-	80	
Hormigón armado d > 2500	2,500	2600,00	1000,00	-	80	
Frondosa de peso medio 565 < d < 750	0,180	660,00	1600,00	-	50	
Mortero de cemento o cal para albañilería y	0,550	1125,00	1000,00	-	10	
Mortero de cemento o cal para albañilería y	1,300	1900,00	1000,00	-	10	
Poliestireno [PS]	0,160	1050,00	1300,00	-	100000	
Caliza dura [2000 < d < 2190]	1,700	2095,00	1000,00	-	150	
Tierra vegetal [d < 2050]	0,520	2000,00	1840,00	-	1	
Placa de yeso o escayola 750 < d < 900	0,250	825,00	1000,00	-	4	
Placas de yeso armado con fibras minerales	0,250	900,00	1000,00	-	4	

2.2.2 Composición de Cerramientos

Nombre	U (W/m²K)	Material	Espesor (m)
C02_CUBIERTA_AULAS	0,54	Mortero de cemento o cal para albañilería y para	0,020
		EPS Poliestireno Expandido [0.029 W/[mK]]	0,030

REGISTRO Y ACREDITACION 23/12/2015 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: Marta Serrano Martinez

ANA LUISA DE GONZALO VIVANCOS
Página: 4

BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Localidad Comunidad

> ALCANTARILLA MURCIA

Nombre	U (W/m²K)	Material	Espesor (m)
C02_CUBIERTA_AULAS	0,54	Poliestireno [PS]	0,005
		Mortero de cemento o cal para albañilería y para	0,030
		FU Entrevigado de hormigón -Canto 300 mm	0,300
		Cámara de aire sin ventilar horizontal 10 cm	0,000
		Placas de yeso armado con fibras minerales 800	0,030
C03_CUBIERTA_AULAS	0,65	Mortero de cemento o cal para albañilería y para	0,020
		EPS Poliestireno Expandido [0.029 W/[mK]]	0,030
		Poliestireno [PS]	0,005
		Mortero de cemento o cal para albañilería y para	0,030
		FU Entrevigado de hormigón -Canto 300 mm	0,300
C04_CUBIERTA_AULAS	0,41	Mortero de cemento o cal para albañilería y para	0,020
		EPS Poliestireno Expandido [0.029 W/[mK]]	0,030
		Poliestireno [PS]	0,005
		Mortero de cemento o cal para albañilería y para	0,030
		FU Entrevigado de hormigón -Canto 300 mm	0,300
		Cámara de aire sin ventilar horizontal 10 cm	0,000
		MW Lana mineral [0.04 W/[mK]]	0,030
C05_CUBIERTA_AULAS	0,54	Mortero de cemento o cal para albañilería y para	0,020
		EPS Poliestireno Expandido [0.029 W/[mK]]	0,030
		Poliestireno [PS]	0,005
		Mortero de cemento o cal para albañilería y para	0,030
		FU Entrevigado de hormigón -Canto 300 mm	0,300
		Cámara de aire sin ventilar horizontal 10 cm	0,000
		Placas de yeso armado con fibras minerales 800	0,030

23/12/2015

BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Localidad Comunidad

> ALCANTARILLA MURCIA

Nombre	U (W/m²K)	Material	Espesor (m)
C06_CUBIERTA_VESTUARIOS	0,44	Caliza dura [2000 < d < 2190]	0,030
		EPS Poliestireno Expandido [0.029 W/[mK]]	0,040
		Poliestireno [PS]	0,005
		Mortero de cemento o cal para albañilería y para	0,100
		FU Entrevigado de hormigón -Canto 300 mm	0,300
		Cámara de aire sin ventilar horizontal 10 cm	0,000
		Placa de yeso o escayola 750 < d < 900	0,030
C07_CUBIERTA_VESTUARIOS	0,50	Caliza dura [2000 < d < 2190]	0,030
		EPS Poliestireno Expandido [0.029 W/[mK]]	0,040
		Poliestireno [PS]	0,005
		Mortero de cemento o cal para albañilería y para	0,100
		FU Entrevigado de hormigón -Canto 300 mm	0,300
C08_CUBIERTA_VESTUARIOS	0,49	Caliza dura [2000 < d < 2190]	0,030
		EPS Poliestireno Expandido [0.029 W/[mK]]	0,040
		Poliestireno [PS]	0,005
		Mortero de cemento o cal para albañilería y para	0,100
		FU Entrevigado de hormigón -Canto 300 mm	0,300
		Enlucido de yeso d < 1000	0,015
C09_Cerramiento_perimetral_e	2,36	BH convencional espesor 200 mm	0,200
		Mortero de cemento o cal para albañilería y para	0,020
C10_FACHADA_EXTERIOR_30cm_	0,48	M16_Morteros_monocapa_	0,035
		M12_Hoja_exterior_de_fachada	0,115
		PUR Proyección con CO2 celda cerrada [0.035	0,050
		M13_Hoja_interior_de_fachada	0,090

23/12/2015

BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Localidad

Comunidad

ALCANTARILLA

MURCIA

Nombre	U (W/m²K)	Material	Espesor (m)
C10_FACHADA_EXTERIOR_30cm_	0,48	M06_Guarnecido_de_yeso_	0,010
C11_FACHADA_EXTERIOR_DE_HO	0,51	Hormigón armado 2300 < d < 2500	0,300
		PUR Proyección con CO2 celda cerrada [0.035	0,050
		M14_Hoja_interior_de_fachada	0,090
		M06_Guarnecido_de_yeso_	0,010
C12_FACHADA_PABELLON	0,51	M11_Hoja_exterior_de_fachada	0,050
		M04_Enfoscado_de_cemento_	0,010
		PUR Proyección con CO2 celda cerrada [0.035	0,050
		M15_Hoja_interior_de_fachada	0,290
C13_FORJADO_ENTRE_PLANTAS	0,36	Plaqueta o baldosa cerámica	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		M18_Polietileno_reticulado	0,040
		Mortero de cemento o cal para albañilería y para	0,020
		M05_FR_Entrevigado_de_hormig	0,350
		Cámara de aire sin ventilar horizontal 10 cm	0,000
		MW Lana mineral [0.04 W/[mK]]	0,040
C14_FORJADO_ENTRE_PLANTAS	0,39	Plaqueta o baldosa cerámica	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		MW Lana mineral [0.04 W/[mK]]	0,040
		Mortero de cemento o cal para albañilería y para	0,020
		M05_FR_Entrevigado_de_hormig	0,350
		Cámara de aire sin ventilar horizontal 10 cm	0,000
		MW Lana mineral [0.04 W/[mK]]	0,040
C15_FORJADO_ENTRE_PLANTAS	0,59	Plaqueta o baldosa cerámica	0,010

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ

ANA LUISA DE GONZALO VIVANCOS

Página: 7

Fecha: 28/10/2015 Ref: 4BBD48D22619AB8

BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Localidad Comunidad

> ALCANTARILLA MURCIA

Nombre	U (W/m²K)	Material	Espesor (m)
C15_FORJADO_ENTRE_PLANTAS	0,59	Mortero de cemento o cal para albañilería y para	0,030
		MW Lana mineral [0.04 W/[mK]]	0,040
		Mortero de cemento o cal para albañilería y para	0,020
		M05_FR_Entrevigado_de_hormig	0,350
		Cámara de aire sin ventilar horizontal 10 cm	0,000
		Placas de yeso armado con fibras minerales 800	0,030
C17_FORJADO_ENTRE_PLANTAS	2,86	M05_FR_Entrevigado_de_hormig	0,350
C18_FORJADO_ENTRE_PLANTAS	0,59	Plaqueta o baldosa cerámica	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		MW Lana mineral [0.04 W/[mK]]	0,040
		Mortero de cemento o cal para albañilería y para	0,020
		M05_FR_Entrevigado_de_hormig	0,350
		Cámara de aire sin ventilar horizontal 10 cm	0,000
		Placa de yeso o escayola 750 < d < 900	0,030
C19_FORJADO_ENTRE_PLANTAS	0,40	Plaqueta o baldosa cerámica	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		M18_Polietileno_reticulado	0,040
		Mortero de cemento o cal para albañilería y para	0,020
		M05_FR_Entrevigado_de_hormig	0,350
		Cámara de aire sin ventilar horizontal 10 cm	0,000
		MW Lana mineral [0.04 W/[mK]]	0,030
C20_FORJADO_ENTRE_PLANTAS	0,52	Plaqueta o baldosa cerámica	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		M18_Polietileno_reticulado	0,040

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Localidad Comunidad

> ALCANTARILLA MURCIA

Nombre	U (W/m²K)	Material	Espesor (m)
C20_FORJADO_ENTRE_PLANTAS	0,52	Mortero de cemento o cal para albañilería y para	0,020
		M05_FR_Entrevigado_de_hormig	0,350
		Cámara de aire sin ventilar horizontal 10 cm	0,000
		Placa de yeso o escayola 750 < d < 900	0,030
C21_FORJADO_ENTRE_PLANTAS	0,70	Plaqueta o baldosa cerámica	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		MW Lana mineral [0.04 W/[mK]]	0,040
		Mortero de cemento o cal para albañilería y para	0,020
		M05_FR_Entrevigado_de_hormig	0,350
		Enlucido de yeso d < 1000	0,015
C22_FORJADO_ENTRE_PLANTAS	0,72	Plaqueta o baldosa cerámica	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		MW Lana mineral [0.04 W/[mK]]	0,040
		Mortero de cemento o cal para albañilería y para	0,020
		M05_FR_Entrevigado_de_hormig	0,350
C23_MURO_HORMIGON_e_30cm_	3,21	Hormigón armado 2300 < d < 2500	0,300
		M04_Enfoscado_de_cemento_	0,015
C24_PANEL_SANDWICH	0,28	EPS Poliestireno Expandido [0.029 W/[mK]]	0,100
C25_Particion_virtual	0,85	M17_Particion_virtual	0,050
C27_TABIQUE_ENTRE_PABELLON_	0,31	M07_Hoja_de_particion_interi	0,290
		PUR Proyección con CO2 celda cerrada [0.035	0,050
		Cámara de aire sin ventilar vertical 5 cm	0,000
		M08_Hoja_de_particion_interi	0,115
		M19_panel_de_lana_de_roca	0,030

23/12/2015 Colegio Oficial de Arquitectos de Murcia MMPG

BYE AMPLIACION Y REFORMA INSTITUTO SANJE

Localidad

Comunidad

ALCANTARILLA

MURCIA

Nombre	U (W/m²K)	Material	Espesor (m)
C27_TABIQUE_ENTRE_PABELLON_	0,31	M20_placa_de_yeso_laminado	0,013
C29_Tabique_de_dos_hojas_par	0,60	M04_Enfoscado_de_cemento_	0,015
		M08_Hoja_de_particion_interi	0,115
		PUR Proyección con CO2 celda cerrada [0.035	0,030
		Cámara de aire sin ventilar vertical 10 cm	0,000
		M10_Hoja_de_particion_interi	0,090
		M06_Guarnecido_de_yeso_	0,010
C30_Tabique_de_una_hoja_9cm	0,56	M20_placa_de_yeso_laminado	0,005
		M03_Aislamiento_entre_montan	0,025
		M09_Hoja_de_particion_interi	0,090
		M03_Aislamiento_entre_montan	0,025
		M20_placa_de_yeso_laminado	0,005
C31_Tabique_de_una_hoja_LM_c	0,59	M20_placa_de_yeso_laminado	0,005
		M03_Aislamiento_entre_montan	0,025
		M02_1_2_pie_LM_metrico_o_cat	0,090
		M03_Aislamiento_entre_montan	0,025
		M20_placa_de_yeso_laminado	0,005
C32_Terreno_bajo_forjado_san	4,80	Tierra vegetal [d < 2050]	0,020
C33_forjado_sanitario	0,61	Plaqueta o baldosa cerámica	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		M18_Polietileno_reticulado	0,040
		Mortero de cemento o cal para albañilería y para	0,020
		FU Entrevigado de hormigón -Canto 300 mm	0,300
C34_forjado_sanitario	2,62	FU Entrevigado de hormigón -Canto 300 mm	0,300

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad

ALCANTARILLA MURCIA

Nombre	U (W/m²K)	Material	Espesor (m)
C35_forjado_sanitario	0,59	Frondosa de peso medio 565 < d < 750	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		M18_Polietileno_reticulado	0,040
		Mortero de cemento o cal para albañilería y para	0,020
		FU Entrevigado de hormigón -Canto 300 mm	0,300
C36_forjado_sanitario	2,42	Plaqueta o baldosa cerámica	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		FU Entrevigado de hormigón -Canto 300 mm	0,300
C37_solera_pabellon	0,64	Frondosa de peso medio 565 < d < 750	0,010
		Mortero de cemento o cal para albañilería y para	0,030
		M18_Polietileno_reticulado	0,040
		Mortero de cemento o cal para albañilería y para	0,020
		Hormigón armado d > 2500	0,200

2.3. Cerramientos semitransparentes

2.3.1 Vidrios

Nombre	U (W/m²K)	Factor solar	Just.
V01_Acristalamiento_U_2_70_W	2,70	0,76	SI
V02_Acristalamiento_U_2_70_W	2,70	0,76	SI
V03_Metalica	5,70	0,00	SI

2.3.2 Marcos

Nombre	U	luct
Nothbre	(W/m ² K)	Just.

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: Marta Serrano Martinez

ANA LUISA DE GONZALO VIVANCOS
Página: 11

Proyecto		
	BYE AMPLIACION Y REFORMA INSTITUTO SANJE	
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Nombre	U (W/m²K)	Just.
R01_Metalica	5,70	SI
R02_Metalico_con_rotura_de_p	4,00	SI

2.3.3 Huecos

Nombre	H01_Puerta
Acristalamiento	V03_Metalica
Marco	R01_Metalica
% Hueco	100,00
Permeabilidad m³/hm² a 100Pa	60,00
U (W/m²K)	5,70
Factor solar	0,14
Justificación	SI

Nombre	H02_Ventana
Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	2,57
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,73
Factor solar	0,74
Justificación	SI

|--|

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
MMPG Colegio Oficial de Arquitectos de Murcia MMPG

Autores: Marta SERRANO MARTINEZ

ANA LUISA DE GONZALO VIVANCO
Página: 12

23/12/2015

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	TUTO SANJE
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	2,18
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,73
Factor solar	0,75
Justificación	SI

Nombre	H04_Ventana
Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	3,59
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,75
Factor solar	0,74
Justificación	SI

Nombre	H05_Ventana	
Acristalamiento	V01_Acristalamiento_U_2_70_W	
Marco	R02_Metalico_con_rotura_de_p	
% Hueco	9,35	
Permeabilidad m³/hm² a 100Pa	27,00	
U (W/m²K)	2,82	
Factor solar	0,70	
Justificación	SI	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Nombre	H06_Ventana
Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	9,43
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,82
Factor solar	0,70
Justificación	SI

Nombre	H07_Ventana	
Acristalamiento	V01_Acristalamiento_U_2_70_W	
Marco	R02_Metalico_con_rotura_de_p	
% Hueco	9,32	
Permeabilidad m³/hm² a 100Pa	27,00	
U (W/m²K)	2,82	
Factor solar	0,70	
Justificación	SI	

Nombre	H08_Ventana	
Acristalamiento	V01_Acristalamiento_U_2_70_W	
Marco	R02_Metalico_con_rotura_de_p	
% Hueco	9,38	
Permeabilidad m³/hm² a 100Pa	27,00	
U (W/m²K)	2,82	
Factor solar	0,70	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Justificación	SI

Nombre	H09_Ventana
Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	3,33
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,74
Factor solar	0,74
Justificación	SI

Nombre	H10_Ventana
Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	1,84
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,72
Factor solar	0,75
Justificación	SI

Nombre	H11_Ventana
Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	4,48
Permeabilidad m³/hm² a 100Pa	27,00

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG 23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Proyecto		
	BYE AMPLIACION Y REFORMA INSTITUTO SANJE	
Localidad		Comunidad
	ALCANTARILLA	MURCIA

U (W/m²K)	2,76
Factor solar	0,73
Justificación	SI

Nombre	H12_Ventana
Acristalamiento	V02_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	4,49
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,76
Factor solar	0,73
Justificación	SI

Nombre	H13_Ventana
Acristalamiento	V02_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	3,36
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,74
Factor solar	0,74
Justificación	SI

Nombre	H14_Ventana
Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
MMPG Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Fecha: 28/10/2015 Ref: 4BBD48D22619AB8

Proyecto			
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE	
Localidad		Comunidad	
	ALCANTARILLA		MURCIA

% Hueco	5,26
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,77
Factor solar	0,73
Justificación	SI

Nombre	H15_Ventana
Acristalamiento	V02_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	2,79
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,74
Factor solar	0,74
Justificación	SI

Nombre	H16_Ventana
Acristalamiento	V02_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	2,80
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,74
Factor solar	0,74
Justificación	SI

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

MMPG Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Autores: MARTA SERRANO MARTINEZ

ANA LUISA DE GONZALO VIVANCOS

Página: 17

Fecha: 28/10/2015 Ref: 4BBD48D22619AB8

Proyecto BYE AMPLIACION Y REFORMA INSTITUTO SANJE Localidad Comunidad ALCANTARILLA MURCIA

Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	3,21
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,74
Factor solar	0,74
Justificación	SI

Nombre	H18_Ventana
Acristalamiento	V02_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	3,13
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,74
Factor solar	0,74
Justificación	SI

Nombre	H19_Ventana
Acristalamiento	V02_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	6,60
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,79
Factor solar	0,72
Justificación	SI

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

MMPG

Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Proyecto BYE AMPLIACION Y REFORMA INSTITUTO SANJE Localidad Comunidad ALCANTARILLA MURCIA

Nombre	1120 Ventore
Nombre	H20_Ventana
Acristalamiento	V02_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	3,61
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,75
Factor solar	0,74
Justificación	SI

Nombre	H21_Ventana
Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	2,73
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,74
Factor solar	0,74
Justificación	SI

Nombre	H22_Ventana	
Acristalamiento	V01_Acristalamiento_U_2_70_W	
Marco	R02_Metalico_con_rotura_de_p	
% Hueco	2,95	
Permeabilidad m³/hm² a 100Pa	27,00	
U (W/m²K)	2,74	
Factor solar	0,74	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

MMPG 23/12/2015 Colegio Oficial de Arquitectos de Murcia MMPG

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Justificación	SI

Nombre	H23_Ventana
Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	2,13
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,73
Factor solar	0,75
Justificación	SI

Nombre H24_Ventana Acristalamiento V01_Acristalamiento_U_2_70_W	
% Hueco	3,85
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,75
Factor solar	0,73
Justificación	SI

Nombre H25_Ventana		
Acristalamiento	V01_Acristalamiento_U_2_70_W	
Marco	R02_Metalico_con_rotura_de_p	
% Hueco	1,78	
Permeabilidad m³/hm² a 100Pa	27,00	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG 23/12/2015 Colegio Oficial de Arquitectos de Murcia MMPG

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ALCANTARILLA	MURCIA

U (W/m²K)	2,72
Factor solar	0,75
Justificación	SI

lombre H26_Ventana	
Acristalamiento	V01_Acristalamiento_U_2_70_W
Marco	R02_Metalico_con_rotura_de_p
% Hueco	1,99
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,73
Factor solar	0,75
Justificación	SI

Nombre	H27_Ventana
Acristalamiento V01_Acristalamiento_U_2_70_W	
Marco	R02_Metalico_con_rotura_de_p
% Hueco	3,61
Permeabilidad m³/hm² a 100Pa	27,00
U (W/m²K)	2,75
Factor solar	0,74
Justificación	SI

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

Autores: Marta Serrano Martinez

Ana Luisa de Gonzalo Vivancos
Página: 21

	Proyecto		
		BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad			Comunidad
		ALCANTARILLA	MURCIA

3. Sistemas

Nombre	S_sis_mixto_calef_acs_1	
Tipo	Sistema mixto	
Nombre Equipo	EQ_1_sis_mixto_calef_acs_1	
Tipo Equipo	Caldera eléctrica o de combustible	
Nombre unidad terminal	VEST_FEM_PABELLON_Panel_1_1350_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	VEST_PROF_FEM_Panel_2_300_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	VEST_PROF_MASC_Panel_3_300_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	VEST_MASC_PABELLON_Panel_4_1350_mm_sis_mixto_calef_acs	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	AULA_DESDOBLE_P_BAJA_Panel_5_750_mm_sis_mixto_calef_acc	
Zona asociada	P02_E08_PABELLON	
Nombre unidad terminal	AULA_DESDOBLE_P_BAJA_Panel_6_750_mm_sis_mixto_calef_acs	
Zona asociada	P02_E08_PABELLON	
Nombre unidad terminal	AULA_Panel_7_1200_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E08_PABELLON	
Nombre unidad terminal	AULA_Panel_8_1200_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E08_PABELLON	
Nombre unidad terminal	DESPACHO_PABELLON_Panel_9_900_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E08_PABELLON	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

Proyecto BYE AMPLIACION Y REFORMA INSTITUTO SANJE Localidad Comunidad ALCANTARILLA MURCIA

Nombre unidad terminal	PABELLON Panel 10 3000 mm sis mixto calef acs 1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	PABELLON_Panel_11_3000_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	PABELLON_Panel_12_3000_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	PABELLON_Panel_13_3000_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	PABELLON_Panel_14_3000_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	PABELLON_Panel_15_3000_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	PABELLON_Panel_16_3000_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	PABELLON_Panel_17_2700_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	PABELLON_Panel_18_2700_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	PABELLON_Panel_19_2700_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	PABELLON_Panel_20_2700_mm_sis_mixto_calef_acs_1	
Zona asociada	P02_E02_PABELLON8	
Nombre unidad terminal	DESPACHO_PPISO_Panel_21_900_mm_sis_mixto_calef_acs_1	
Zona asociada	P03_E02_PABELLON	
Nombre unidad terminal	AULA_DESDOBLE_PPISO_Panel_22_1350_mm_sis_mixto_calef_ac	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ
ANA LUISA DE GONZALO VIVANCOS
Página: 23

23/12/2015

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Zona asociada	P03_E02_PABELLON	
Nombre unidad terminal	AULA_DESDOBLE_PPISO_Panel_23_1350_mm_sis_mixto_calef_ar	
Zona asociada	P03_E02_PABELLON	
Nombre unidad terminal	AULA_3_Panel_24_2700_mm_sis_mixto_calef_acs_1	
Zona asociada	P03_E02_PABELLON	
Nombre unidad terminal	AULA_3_Panel_25_2400_mm_sis_mixto_calef_acs_1	
Zona asociada	P03_E02_PABELLON	
Nombre unidad terminal	AULA_2_Panel_26_2100_mm_sis_mixto_calef_acs_1	
Zona asociada	P03_E02_PABELLON	
Nombre unidad terminal	AULA_2_Panel_27_1500_mm_sis_mixto_calef_acs_1	
Zona asociada	P03_E02_PABELLON	
Nombre unidad terminal	AULA_1_Panel_28_2700_mm_sis_mixto_calef_acs_1	
Zona asociada	P03_E02_PABELLON	
Nombre unidad terminal	AULA_1_Panel_29_2700_mm_sis_mixto_calef_acs_1	
Zona asociada	P03_E02_PABELLON	
Nombre unidad terminal	AULA_2_Panel_30_1800_mm_sis_mixto_calef_acs_1	
Zona asociada	P03_E02_PABELLON	
Nombre demanda ACS	D_sis_mixto_calef_acs_1	
Nombre equipo	A_sis_mixto_calef_acs_1	
acumulador		
Porcentaje abastecido	70	
con energia solar		
Temperatura impulsión	60,0	
del ACS(°C)		
Temperatura impulsión	80,0	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957 23/12/2015 Colegio Oficial de Arquitectos de Murcia MMPG

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ALCANTARILLA	MURCIA

de la calefacción(ºC)	
de la caleracción(%)	

4. Iluminacion

Nombre	Pot. Iluminación	VEEIObj	VEEIRef
P01_E01 Espacio0	0	0	0
P02_E01_PABELLON1	0	0	0
P02_E02_PABELLON8	4,25	1,899999976	5
P02_E03_PASO_VEST	7,46999979019165	5,900000095	4,5
P02_E04_PABELLON2	8,07999992370605	5,199999809	4,5
P02_E05_PABELLON4	0	0	0
P02_E06_PABELLON6	6,19000005722046	4,099999904	4,5
P02_E07_ALMACEN_C	0	0	0
P02_E08_PABELLON	11,6499996185303	3,200000047	4
P02_E09_CANTINA_P	9,59000015258789	3,400000095	10
P02_E10 Espacio0	0	0	0
P02_E11_ASC_PBAJA	0	0	0
P02_E12 Espacio0	0	0	0
P02_E13 Espacio0	0	0	0
P03_E01_PABELLON2	8,13000011444092	3,700000047	4,5
P03_E02_PABELLON	12,1800003051758	3,200000047	4
P03_E03_ASCEN_PIS	0	0	0
P03_E04 Espacio0	0	0	0
P03_E05 Espacio0	0	0	0

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

Autores: Marta Serrano Martinez

ANA LUISA DE GONZALO VIVANCOS
Página: 25

Proyecto		
	BYE AMPLIACION Y REFORMA INSTITUTO SANJE	
Localidad		Comunidad
	ALCANTADILLA	MUDCIA

5. Equipos

Nombre	A_sis_mixto_calef_acs_1
Tipo	Acumulador Agua Caliente
Volumen del deposito (L)	1000,00
Coeficiente de pérdidas	1,00
global del depósito, UA	
Temperatura de consigna	45,00
baja del depósito (ºC)	
Temperatura de consigna	45,00
alta del deposito (ºC)	
Temperatura de entrada	15,00
del agua de red (°C)	
Temperatura del	25,00
ambiente exterior (ºC)	

Nombre	EQ_1_sis_mixto_calef_acs_1
Tipo	Caldera eléctrica o de combustible
Capacidad nominal (kW)	300,00
Rendimiento nominal	0,93
Capacidad en función de	cap_T-EQ_Caldera-unidad
la temperatura de impulsión	
Rendimiento nominal en función	ren_T-EQ_Caldera-unidad
de la temperatura de impulsión	
Rendimiento en función	ren_FCP_Potencia-EQ_Caldera-Convencional-Defecto
de la carga parcial	
en términos de potencia	
Rendimiento en función	ren_FCP_Tiempo-EQ_Caldera-unidad

Autores: Marta Serrano Martinez

ANA LUISA DE GONZALO VIVANCO
Página: 26 Ref: 4BBD48D22619AB8

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ALCANTARILLA	MURCIA

de la carga parcial en términos de tiempo	
Tipo energia	Gasoleo

6. Unidades terminales

Nombre	VEST_FEM_PABELLON_Panel_1_1350_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	3,00
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (ºC)	

Nombre	VEST_PROF_FEM_Panel_2_300_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	0,70
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre	VEST_PROF_MASC_Panel_3_300_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	0,70

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
Colegio Oficial de Arquitectos de Murcia MMPG

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ΔΙ CΔΝΤΔΡΙΙΙ Δ	MUDCIA

potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre	VEST_MASC_PABELLON_Panel_4_1350_mm_sis_mixto_calef_acs_
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	3,00
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (ºC)	

Nombre	AULA_DESDOBLE_P_BAJA_Panel_5_750_mm_sis_mixto_calef_acs
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E08_PABELLON
Capacidad o	1,70
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre	AULA_DESDOBLE_P_BAJA_Panel_6_750_mm_sis_mixto_calef_acs
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E08_PABELLON
Capacidad o	1,70
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (ºC)	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

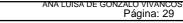
Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Nombre	AULA_Panel_7_1200_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E08_PABELLON
Capacidad o potencia máxima (kW)	2,70
Ancho de banda del termostato (ºC)	1,00

Nombre	AULA_Panel_8_1200_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E08_PABELLON
Capacidad o	2,70
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (ºC)	


Nombre	DESPACHO_PABELLON_Panel_9_900_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E08_PABELLON
Capacidad o	2,00
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre	PABELLON Panel 10 3000 mm sis mixto calef acs 1
Nombre	PABELLON_Panel_10_3000_mm_sis_mixto_calef_acs_1

23/12/2015

Proyecto		
	BYE AMPLIACION Y REFORMA INSTITUTO SANJE	
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o potencia máxima (kW)	6,70
Ancho de banda del termostato (ºC)	1,00

Nombre	PABELLON_Panel_11_3000_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	6,70
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (ºC)	

Nombre	PABELLON_Panel_12_3000_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	6,70
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre	Nombre PABELLON_Panel_13_3000_mm_sis_mixto_calef_acs_1	
Tipo	U.T. De Agua Caliente	
Zona abastecida	P02_E02_PABELLON8	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Fecha: 28/10/2015 Ref: 4BBD48D22619AB8

Proyecto		
	BYE AMPLIACION Y REFORMA INSTITUTO SANJE	
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Capacidad o potencia máxima (kW)	6,70
Ancho de banda	1,00
del termostato (°C)	

Nombre	PABELLON_Panel_14_3000_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	6,70
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre	PABELLON_Panel_15_3000_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	6,70
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre	PABELLON_Panel_16_3000_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o potencia máxima (kW)	6,70
Ancho de banda	1,00

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Proyecto		
	BYE AMPLIACION Y REFORMA INSTITUTO SANJE	
Localidad		Comunidad
	ALCANTARILLA	MURCIA

del termostato (°C)

Nombre	PABELLON_Panel_17_2700_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	6,10
potencia máxima (kW)	
Ancho de banda del termostato (ºC)	1,00

Nombre	PABELLON_Panel_18_2700_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	6,10
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (ºC)	

Nombre	PABELLON_Panel_19_2700_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o	6,10
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre PABELLON_Panel_20_2700_mm_sis_mixto_calef_acs_1
--

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
MMPG Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Fecha: 28/10/2015 Ref: 4BBD48D22619AB8

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Tipo	U.T. De Agua Caliente
Zona abastecida	P02_E02_PABELLON8
Capacidad o potencia máxima (kW)	6,10
Ancho de banda del termostato (ºC)	1,00

Nombre	DESPACHO_PPISO_Panel_21_900_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P03_E02_PABELLON
Capacidad o	0,90
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (ºC)	

Nombre	AULA_DESDOBLE_PPISO_Panel_22_1350_mm_sis_mixto_calef_ac
Tipo	U.T. De Agua Caliente
Zona abastecida	P03_E02_PABELLON
Capacidad o	1,30
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre	AULA_DESDOBLE_PPISO_Panel_23_1350_mm_sis_mixto_calef_ac	
Tipo	U.T. De Agua Caliente	
Zona abastecida	P03_E02_PABELLON	

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

MMPG

Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Proyecto		
	BYE AMPLIACION Y REFORMA INSTIT	UTO SANJE
Localidad		Comunidad
	ALCANTADILLA	MUDCIA

Capacidad o potencia máxima (kW)	1,30
Ancho de banda del termostato (ºC)	1,00

Nombre AULA_3_Panel_24_2700_mm_sis_mixto_calef_acs_1	
Tipo	U.T. De Agua Caliente
Zona abastecida	P03_E02_PABELLON
Capacidad o	2,60
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre AULA_3_Panel_25_2400_mm_sis_mixto_calef_acs_1	
Tipo U.T. De Agua Caliente	
Zona abastecida	P03_E02_PABELLON
Capacidad o	2,30
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (°C)	

Nombre	AULA_2_Panel_26_2100_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P03_E02_PABELLON
Capacidad o potencia máxima (kW)	2,00
Ancho de banda	1,00

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Fecha: 28/10/2015 Ref: 4BBD48D22619AB8

Proyecto		
	BYE AMPLIACION Y REFORMA INSTITUTO SANJE	
Localidad		Comunidad
	ALCANTARILLA	MURCIA

|--|

Nombre	AULA_2_Panel_27_1500_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P03_E02_PABELLON
Capacidad o	1,50
potencia máxima (kW)	
Ancho de banda del termostato (ºC)	1,00

Nombre AULA_1_Panel_28_2700_mm_sis_mixto_calef_acs_1	
Tipo	U.T. De Agua Caliente
Zona abastecida	P03_E02_PABELLON
Capacidad o	2,60
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (ºC)	

Nombre	AULA_1_Panel_29_2700_mm_sis_mixto_calef_acs_1
Tipo	U.T. De Agua Caliente
Zona abastecida	P03_E02_PABELLON
Capacidad o	2,60
potencia máxima (kW)	
Ancho de banda	1,00
del termostato (ºC)	

Nombre	AULA_2_Panel_30_1800_mm_sis_mixto_calef_acs_1

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

MMPG Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Autores: Marta Serrano Martinez

ANA LUISA DE GONZALO VIVANCOS

Página: 35

Fecha: Ref: 4BBD48D22619AB8

Proyecto		
	BYE AMPLIACION Y REFORMA INSTITUTO SANJE	
Localidad		Comunidad
	ALCANTARILLA	MURCIA

Tipo	U.T. De Agua Caliente
Zona abastecida	P03_E02_PABELLON
Capacidad o potencia máxima (kW)	1,80
Ancho de banda del termostato (ºC)	1,00

7. Justificación

7.1. Contribución solar

Nombre	Contribución Solar Minima	Contribución Solar Minima HE-4
S_sis_mixto_calef_acs_1	70,0	70,0

Proyecto			
	BYE AMPLIACION Y REFORMA INSTITUTO SANJE		
Localidad		Comunidad	
	ALCANTARILLA	MURCIA	

8. Resultados

Certificación Energética de Edificios Indicador kgCO2/m²	Edificio Objeto
A B C D E F	48,4 C
Demanda calefacción kWh/m²	C 136,4
Demanda refrigeración kWh/m²	D 47,9
Emisiones CO2 calefacción kgCO2/m²	C 29,7
Emisiones CO2 refrigeración kgCO2/m²	A 0,0
Emisiones CO2 ACS kgCO2/m²	B 1,2
Emisiones CO2 lluminación kgCO2/m²	B 17,5

Autores: Marta Serrano Martinez

ANA LUISA DE GONZALO VIVANCOS
Página: 37

ANEXO 3: INSTALACION ELECTRICA DE B.T.

ANEXO 3: INSTALACION ELECTRICA DE B.T.

3.1 **DESCRIPCION GENERICA DE LAS INSTALACIONES Y SU USO**

Se colocara un cuadro principal de distribución en cada edificio nuevo, que será el encargado de proporcionar energía eléctrica, a la tensión de 400V. en trifásico y 230V. en monofásico, a todos los cuadros secundarios previstos en la instalación, dadas las longitudes de las líneas a considerar.

La instalación de alumbrado se ha diseñado a fin de consequir un nivel de iluminación de unos 150 lux en pasillos, vestíbulos, cafetería y almacenes, 250 lux salas de profesores y alumnos, 300 lux en las aulas y 400 lux en la biblioteca y los despachos.

Las líneas de alimentación a los receptores estarán formadas por conductores de cobre no propagadores de llama, no propagadores de incendio, libres de halógenos, con baja emisión de humos opacos y nula emisión de gases corrosivos, colocados bajo canal y tubo rígido o coarrugado de P.V.C., según tramos, de protección mecánica 7. Los circuitos de alumbrado interior, tomas de corriente, fancoils, bombas de la sala de calderas, aparatos monofásicos de la cantina y otros usos estarán dotados de aislamiento para una tensión nominal de 750 V, mientras que el resto de cables de fuerza, alumbrado exterior y suministro a cuadros secundarios siempre estarán aislados para una tensión nominal de 1.000 V; además, en el caso de las líneas de alimentación al grupo de protección contra incendios del edificio del I.E.S. y la central de incendios del edificio del C.I.F.P., los conductores serán resistentes al fuego para una temperatura de 400 °C en 2 horas.

Todas las instalaciones se realizaran empotradas o por encima del falso techo, excepto alguna canalización que por imposibilidad constructiva deba de ir de forma superficial, como es el caso de los cuartos de calderas y contraincendios.

3.2 **DESCRIPCION DE LA INSTALACION DE ENLACE**

3.2.1 Acometida

Las acometidas hasta cada edificio se realizaran desde el armario de seccionamiento existente en la parcela en la ubicación indicada en los planos de urbanizacion. Las mismas se realizaran vistas por las fachadas de los edificios existentes y cogidas a postes metalicos en las zonas donde no existan edificios.

3.2.2 Caja general de proteccion.

Es la caja que aloja los elementos de protección de las derivaciónes individuales, en nuestro caso se colocara en las fachadas de los edificios a construir, manteniendo el criterio de los edificios existentes actualmente en el centro.

Seran de poliéster autoextinguible, como minimo de Clase A, según UNE 21305, reforzadas con fibra de vidrio con tapa provista de tornillos de forma triangular que cierran herméticamente y son precintados por la Compañía suministradora, siendo su grado de protección IP-55 según norma UNE 20324 y IK10 según norma 50102.

3.2.3 Derivacion individual.

Las derivaciónes individuales se realizará mediante conductores aislados en el interior de canal de pvc rigido con tapadera o tubo de pvc rigido colocados de forma superficial por el falso techo hasta la llegada al cuadro principal situado en la Planta Baja de cada edificio.

La caída de tensión máxima admisible será del 1,5 %.

Los conductores serán de Cobre rigido con un aislamiento de tensión nominal de 0.6/1kV de polietileno reticulado XLPE, no propagadores de llama, no propagadores de incendios, libres de halogenos, con baja emisión de humos opacos, nula emisión de gases corrosivos y resistentes al fuego para una temperatura de 400°C en dos horas, especificación RZ1-K (AS+) para 1.000V..

3.3 **DESCRIPCION DE LA INSTALACION INTERIOR.**

Atendiendo a los criterios de clasificación de la Instrucción Complementaria ITC-BT-28 del vigente Reglamento Electrotécnico para Baja Tensión (R.E.B.T.), debemos clasificar los edificios como "local de pública concurrencia", y más concretamente, dentro del grupo "locales de reunión, trabajo y usos sanitarios", por tratarse de un colegio.

La ITC-BT-29 considera locales con riesgo de incendio o explosión aquellos emplazamientos en los que se fabriquen, procesen, manipulen, traten, utilicen o almacenen sustancias sólidas, líquidas o gaseosas, susceptibles de inflamarse, deflagrar o explosionar, siendo sostenida la reacción por el aporte de oxígeno procedente del alre ambiente en que se encuentran. Las zonas susceptibles de recibir esta consideración sería la sa encuentra del acción por el aporte de oxígeno procedente del alre ambiente en que se encuentran. Las zonas susceptibles de recibir esta consideración sería la sa encuentra del I.E.S. Por todo lo anterior, resulta necesario realizar un estudio del I.E.S. Por todo lo anterior, resulta necesario realizar un estudio del I.E.S. por todo lo anterior, resulta necesario realizar un estudio del I.E.S. por todo lo anterior. comprobar que durante el funcionamiento normal no existirán locales con residencia de incendio o explosión siguiendo las MMPG directrices de la norma anteriormente citada.

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

659 081 538

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

En el interior de la sala de calderas las posibles fuentes de escape pueden ser debidas bien a roturas o averías de la tubería de cobre de alimentación de gasoleo a la caldera, bien al almacenamiento de combustible en el interior de la sala. El punto "b" del apartado A.1.3 del anexo de la norma UNE clasifica como fuentes que dan escapes de grado secundario a "bridas y accesorios de tuberías donde no se esperan escapes de sustancias inflamables en funcionamiento normal". Como vemos, la rotura de la tubería de gasoleo, que lógicamente deriva en una reparación urgente, no se puede considerar dentro del funcionamiento normal de la actividad, por lo que no debe considerarse a efectos de clasificación de zonas.

De acuerdo con la ITC-BT-30 del R.E.B.T., tendrán la consideración de locales húmedos aquellos emplazamientos cuyas condiciones ambientales se manifiestan momentáneamente o permanentemente bajo la forma de condensación en el techo y paredes, manchas salinas o moho aún cuando no aparezcan gotas, ni el techo o paredes estén impregnados de agua. Dentro de esta clasificación se podría incluir la misma sala de calderas. En este local el fluido circulará en su totalidad por tuberías cerradas, por lo que no resulta probable la aparición de agua, ni tan siquiera de humedad en suelo y paredes. Así mismo, teniendo en cuenta la adecuada ventilación que tendrá dicha sala de calderas, resulta poco probable la aparición de condensaciones en el interior la misma. Por todo lo anterior y por las características constructivas se estima que no procede clasificar la sala de calderas como local húmedo. No obstante, a fin de aumentar la seguridad, la instalación en este local se ha diseñado con un índice de protección adecuado para la caída vertical de agua (IP-x4x).

En el caso de las zonas de duchas de los vestuarios, éstas se regirán por su instrucción ITC-BT-27 que establece las condiciones para locales que contienen bañeras o duchas.

El resto de locales no tendrán clasificación específica por sus condiciones constructivas.

Resumiendo, aunque la instalación dispondrá de dependencias que debido a su uso dispondrán de clasificación específica, genéricamente el colegio se clasificará como "local de reunión" según los criterios de clasificación de la Instrucción ITC-BT-28.

Las instalaciones en los locales de pública concurrencia, cumplirán las condiciones de carácter general que a continuación se señalan.

- Los aparatos receptores que consuman más de 16 amperios se alimentarán directamente desde el cuadro general o desde los secundarios.
- El cuadro general de distribución e, igualmente, los cuadros secundarios, se instalarán en lugares a los que no tenga acceso el público y que estarán separados de los locales donde exista un peligro acusado de incendio o de pánico (cabinas de proyección, escenarios, salas de público, escaparates, etc.), por medio de elementos a prueba de incendios y puertas no propagadoras del fuego. Los contadores podrán instalarse en otro lugar, de acuerdo con la empresa distribuidora de energía eléctrica, y siempre antes del cuadro general.
- Cerca de cada uno de los interruptores del cuadro se colocará una placa indicadora del circuito al que pertenecen.
- En las instalaciones para alumbrado de locales o dependencias donde se reúna público, el número de líneas secundarias y su disposición en relación con el total de lámparas a alimentar deberá ser tal que el corte de corriente en una cualquiera de ellas no afecte a más de la tercera parte del total de lámparas instaladas en los locales o dependencias que se iluminan alimentadas por dichas líneas. Cada una de estas líneas estarán protegidas en su origen contra sobrecargas, cortocircuitos, y si procede contra contactos indirectos.
- Los cables y sistemas de conducción de cables deben instalarse de manera que no se reduzcan las características de la estructura del edificio en la seguridad contra incendios.
- Los cables eléctricos a utilizar en las instalaciones de tipo general y en el conexionado interior de cuadros eléctricos en este tipo de locales, serán no propagadores del incendio y con emisión de humos y opacidad reducida.
- Las fuentes propias de energía de corriente alterna a 50 Hz, no podrán dar tensión de retorno a la acometida o acometidas de la red de Baja Tensión pública que alimenten al local de pública concurrencia.
- A partir del cuadro general de distribución se instalarán líneas distribuidoras generales, accionadas por medio de interruptores omnipolares, al menos para cada uno de los siguientes grupos de dependencias o locales:
 - Salas de venta o reunión, por planta del edificio
 - Escaparates
 - Almacenes
 - Talleres
 - Pasillos, escaleras y vestíbulos

Ademas con objeto de evitar la caída de cristales en caso de rotura de los tubos, en los aseos y los vestuarios se ha optado por una instalación realizada mediante pantallas y aros con difusor corrade

> **REGISTRO Y ACREDITACION** 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Pecha El presente documento ha sido registrado y acreditado. Fecha

3.3.1 Cuadro principal de distribucion.

Los cuadros generales de distribución se colocarán dentro de un armario metalico prefabricado, recubierto por una capa de pintura epoxi, dotado de puerta y llave y un grado de protección IP-547 o superior, destinado para tal efecto y el cual no será accesible para el público, solamente podrá ser manipulado por la persona autorizada para ello.

Dichos cuadros estarán compuestos por un interruptor general automatico para realizar el corte de toda la instalación. Por otro lado, los cuadros estarán equipados con las protecciones contra sobrecargas y cortocircuitos para las líneas de alimentación de los cuadros de distribución secundarios de los que consta nuestra instalacion.

La composición así como las diferentes protecciones colocadas en estos cuadros pueden verse perfectamente reflejados en el documento de planos de este mismo proyecto.

3.3.2 Cuadros secundarios.

A fin de permitir una adecuada sectorización de los consumos, se ha previsto la colocación de varios cuadros secundarios generales. Tambien se han previsto las líneas de derivación necesarias para la conexión de los cuadros de protección de cada uno de los ascensores instalados en el colegio. Estos cuadros formaran parte de las instalaciones especificas de estos ascensores y que dependiendo de la compañía contratada para la instalación de los mismos tendrán una composición determinada, por lo que la instalación de estos cuadros no se describe en este proyecto, aunque si se realizan la medición y presupuesto estimados del mismo.

Para alojar toda la aparamenta de mando y protección de cada uno de los cuadros secundarios se dispondra de armarios metalicos plastificados, dotados de puerta y llave. En su interior incorporaran las protecciones contra sobrecargas y cortocircuitos de los consumos que alimentan, que se realizaran mediante magnetotermicos de calibre especificado en planos, asi como las protecciones contra contactos indirectos, que se realizan con diferenciales de 30mA de sensibilidad.

3.3.3 Lineas de distribucion y canalizacion.

Dadas las características de la instalación, se han previsto varios sistemas de canalización: el primero, para alimentar los cuadros secundarios, estará formado por conductores de cobre aislados para 1.000 V montados bajo tubo rígido P.V.C. en unos tramos, y bajo tubo coarrugado en otros, todos de protección mecánica 7; el segundo, para los aparatos trifásicos y algunos aparatos de potencias elevadas, se realizará mediante conductores de cobre aislados para 1.000 V, canalizados bajo tubo rígido P.V.C. en unos tramos, y bajo tubo coarrugado en otros; por último, el tercero, para líneas a puntos de luz, tomas de corriente, fancoils, bombas de la sala de calderas, aparatos monofásicos de la cocina y otros usos, se realizará mediante conductores de cobre aislados para 750 V canalizados bajo tubo coarrugado o rígido, según tramo, de P.V.C., protección mecánica 7, empotrado en paramentos en unos tramos y bajo falso techo en otros.

Como norma general, un tubo protector sólo contendrá conductores de un mismo y único circuito, no obstante, podrá contener conductores pertenecientes a circuitos diferentes si todos los conductores están aislados para la máxima tensión de servicio, todos los circuitos parten del mismo interruptor general de mando y protección, sin interposición de aparatos que transformen la corriente, y cada circuito está protegido por separado contra las sobreintensidades.

Las conexiones entre conductores se realizarán en el interior de cajas apropiadas de materia aislante. Las dimensiones de estas cajas serán tales que permitan alojar holgadamente todos los conductores que deban contener. Cuando se quieran hacer estancas las entradas de los tubos en las cajas de conexión, deberán emplearse prensaestopas adecuados. En ningún caso se permitirá la unión de conductores, como empalmes o derivaciones por simple retorcimiento o arrollamiento entre sí de los conductores, sino que deberá realizarse siempre utilizando bornes de conexión.

El paso de las canalizaciones a través de elementos de la construcción, tales como muros, tabiques y techos, se realizará de acuerdo a las siguientes prescripciones:

- En toda la longitud de los pasos no se dispondrán empalmes o derivaciones de conductores, y estarán suficientemente protegidos contra los deteriores mecánicos, las acciones químicas y los efectos de la humedad.
 - Si la longitud de paso excede de 20 cm se dispondrán tubos blindados.

En caso de proximidad de canalizaciones eléctricas con otras no eléctricas, se dispondrán de forma que entre las superficies exteriores de ambas se mantenga una distancia de 3 cm, por lo menos.

Como norma general, las canalizaciones eléctricas no se situarán paralelamente por debajo de otras que puedan dar lugar a condensaciones.

Las canalizaciones eléctricas se dispondrán de manera que en cualquier momento se pueda controlar su aislamiento, localizar y separar las partes averiadas y, llegado el caso, reemplazar fácilmente los conductores deteriorados.

Conforme a los sistemas de instalación descritos en el apartado anterior, para la instalación interior y exterior del edificio se emplearán conductores de cobre, de secciones especificadas en tablas polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno reticulado polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno reticulado para una tensión nominal de 750 y 1.000 V, no propagado es decumenaos recomes polietileno de 100 V, no propagado es decumenaos recomes polietileno de 100 V, no propagado es decumenaos recomes polietileno de 100 V, no propagado es decumenaos recomes polietileno de 100 V, no propagado es de 100 incendio, libres de halógenos, con baja emisión de humos opacos y nula emisión de gases corresivos requiectos de humos opacos y nula emisión de gases corresivos requiectos de humos opacos y nula emisión de gases corresivos requiectos de humos opacos y nula emisión de gases corresivos requiectos de humos opacos y nula emisión de gases corresivos requiectos de humos opacos y nula emisión de gases corresivos requiectos de humos opacos y nula emisión de gases corresiones de humos opacos y nula emisión de gases corresiones de humos opacos y nula emisión de gases corresiones de humos opacos y nula emisión de gases corresiones de la correspondivo de humos opacos y nula emisión de gases correspondivos requientes de la correspondivo de la corres para 750V (ES 07Z1-K (AS)) y UNE-21.123/4 especificación RZ1-K (AS) para 1.000 V

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

- 659 081 538

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

Además, en el caso de la línea de alimentación al grupo de presión y la centralita contraincendios, los conductores serán resistentes al fuego para una temperatura de 400 °C en 2 horas, especificación RZ1-K (AS+) para 1.000 V. y ES 07Z1-K (AS+) para 750 V.

Los tubos y canales de P.V.C. a utilizar serán no propagadores de la llama, de acuerdo con las normas UNE-EN 50.086-1 y UNE-EN 50.085-1, cuyas dimensiones, así como las longitudes de los circuitos, serán las descritas en el correspondiente apartado de cálculos justificativos y esquemas unifilares. Los tubos protectores tendrán protección mecánica 7.

La sección de los conductores a utilizar se determinará de forma que la caída de tensión entre el origen de la instalación interior y cualquier punto de utilización sea menor del 3 % para alumbrado y del 5 % para los demás usos.

El valor de la caída de tensión podrá compensarse entre la de la instalación interior (3-5 %) y la de la derivación individual (1,5 %), de forma que la caída de tensión total sea inferior a la suma de los valores límites especificados para ambas (4,5-6,5 %).

En instalaciones interiores, para tener en cuenta las corrientes armónicas debidas a cargas no lineales y posibles desequilibrios, salvo justificación por cálculo, la sección del conductor neutro será como mínimo igual a la de las fases. No se utilizará un mismo conductor neutro para varios circuitos.

Las intensidades máximas admisibles, se regirán en su totalidad por lo indicado en la Norma UNE 20.460-5-523 y su anexo Nacional.

Los conductores de protección tendrán una sección mínima igual a la fijada en la tabla siguiente:

Sección conductores fase (mm²)	Sección conductores protección (mm²)
Sf < 16	Sf
16 < S f < 35	16
Sf > 35	Sf/2

Los conductores de la instalación deben ser fácilmente identificables, especialmente por lo que respecta al conductor neutro y al conductor de protección. Esta identificación se realizará por los colores que presenten sus aislamientos. Cuando exista conductor neutro en la instalación o se prevea para un conductor de fase su pase posterior a conductor neutro, se identificarán éstos por el color azul claro. Al conductor de protección se le identificará por el color verdeamarillo. Todos los conductores de fase, o en su caso, aquellos para los que no se prevea su pase posterior a neutro, se identificarán por los colores marrón, negro o gris.

El numero de circuitos derivados del cuadro general y cuadros secundarios, con sus potencias, intensidades, longitudes, caidas de tensión y diámetros de los tubos a emplear, seran los descritos en el correspondiente apartado de calculos justificativos y esquemas unifilares.

3.3.4 Receptores.

Los materiales y equipos utilizados en las instalaciones deberan ser utilizados en la forma y la finalidad para la que fueron fabricados. Los incluidos en el campo de aplicación de la reglamentación de transposición de las Directivas de la Union Europea deberan cumplir con lo establecido en las mismas.

En lo no cubierto por tal reglamentación se aplicaran los criterios técnicos preceptuados por el REBT y las normas UNE de referencia en el mismo. En particular, se incluiran junto con los equipos y meteriales las indicaciones necesarias para su correcta instalación y uso, debiendo marcarse con las siguientes indicaciones minimas:

- a) Identificación del fabricante, responsable legal o de la comerzializacion.
- b) Marca y modelo
- Tensión y potencia (o intensidad) asignadas. c)
- Cualquier otra indicación referente al uso especifico del material o equipo, asignado por el d) fabricante.

3.4 ALUMBRADOS DE EMERGENCIA.

Independientemente del alumbrado eléctrico ordinario, se establecerá un alumbrado de emergencia, constituido por aparatos autónomos con una autonomía superior a una hora y dotados de un dispositivo de encendido instantaneo.

Estos aparatos iran conectados a los mismos circuitos de los puntos de luz de la zona en la que se hallen instalados, de tal modo que, en caso de fallo del alumbrado o cuando la tensión de estos baje por debajo del 70% de su valor nominal, se producira el encendido automatico. Asi mismo, el conexionado se realizara de forma que la maniobra no pueda cortar el suministro electrico a las emergencias; a su vez los magnetotermicos de los circuitos de alumbrado que lleven conectados los aparatos autónomos seran como máximo de 10A de intensidad nominal.

Su colocación será principalmente en las salidas y lugares estratégicos, indicándose planta adjuntos.

Las canalizaciones que alimentan los alumbrados de emergencia se dispondirán cales como Amínimo, de otras MMPG canalizaciones eléctricas.

su emplazamiento en los planos de REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

659 081 538

Tal y como hemos mencionado anteriormente, de acuerdo con lo establecido en la ITC-BT-28 del vigente REBT, se dispondra de alumbrado de evacuación de las características ya descritas, de tal manera que proporcionara una iluminancia horizontal minima de 1 lux en las rutas de evacuación, a nivel del suelo y en el eje de los pasos principales, y de 5 lux en los puntos donde esten situados los equipos de las instalaciones de protección contra incendios de uso manual y en los cuadros de distribución del alumbrado.

3.5 **SUMINISTROS COMPLEMENTARIOS**

El vigente Reglamento Electrotécnico para Baja Tensión, define los suministros complementarios o de seguridad como los que a efectos de "seguridad y continuidad de suministro" complementan a uno normal. Por tanto, según prescribe la ITC-BT-28, dado que los edificios del proyecto que nos ocupa se han clasificado como "locales de pública concurrencia", en concreto dentro del grupo "locales de reunión, trabajo y usos sanitarios", y teniendo en cuenta que la ocupación prevista en el edificio del C.I.F.P. en la zona de aularios, es superior a 300 personas, y en particular de 338 personas, dicho edificio dispondrá de alumbrado de emergencia y suministro de socorro, con las características que se describen a continuación.

El vigente Reglamento Electrotécnico para Baja Tensión establece que el suministro complementario de socorro es aquel que está limitado a una potencia mínima equivalente al 15% del total contratado para el suministro normal. En este caso, el suministro de socorro del edificio del C.I.F.P. se realizará a través del grupo electrógeno de 49,6 kVA, que se instalará en el cuarto de instalaciones situado en el extremo del edificio y que garantizará la continuidad de suministro de los sistemas de emergencia y alumbrado de todo el edificio, aunque la única parte del mismo cuya ocupación supera las 300 personas sea la zona de aularios.

El grupo electrógeno se conectará al embarrado partido del cuadro general de distribución situado en conserjeria mediante una línea formada por un conductor de cobre por fase, de 35 mm² de sección, con aislamiento para una tensión nominal de 1 kV, colocado en tubo superficial de diámetro 50mm. Dicha línea dispondrá de un interruptor magnetotérmico de 100 A regulado a 92 A, colocado en el propio grupo y estará enclavada mediante sendos contactores de 100A, a la parte del embarrado del cuadro general alimentada desde la red general, de forma que un fallo en el suministro normal de funcionamiento producirá el accionamiento automatico de dichos contactores, haciendo que entre en funcionamiento solamente el suministro complementario, realizado mediante el grupo electrogeno.

3.6 PUESTA A TIERRA.

3.6.1 Descripcion del sistema de proteccion contra contactos indirectos.

La protección contra contactos indirectos que mas ventajas ofrece y que mas se utiliza en la practica, es la puesta a tierra de las masas y como dispositivos de corte el interruptor diferencial.

Las ventajas de la protección quedan de manifiesto, si analizamos las condiciones que se exigen contra contactos indirectos:

- a) Tiempo de desconexion de la instalación defectuosa, menor o igual a 5seg.
- Tensión de contacto masa-tierra inferior a 24V. (locales humedos) y 50V. (locales o emplazamientos secos).

La puesta a tierra de nuestros edificios se realizará mediante cable de cobre desnudo de 95 mm², enterrado en el fondo de las zanjas de cimentación, a una profundidad no inferior a 80 cm. Dicho conductor formará un anillo cerrado interior al perímetro del edificio y llevará cuantas ramificaciones sean necesarias (formando anillos cerrados) de modo que quede conectada a tierra toda la estructura metálica del edificio, o las armaduras metálicas que forman parte del hormigón armado, tal y como viene reflejado en el correspondiente plano.

Del anillo o sus ramificaciones se derivarán las líneas principales de tierra, que partirán de las arquetas correspondientes que satisfarán la Norma NTE IEP/1.973 de 13 de Marzo. Los conductores de protección discurrirán canalizados bajo el mismo tubo o canal del circuito que alimenten.

3.6.2 Tomas de tierra.

Cumpliran en todo momento lo dispuesto en la ITC-BT-18.

Las tomas de tierra estaran constituidas por los elementos siguientes:

- a) Electrodo: es una masa metalica, permanente en buen contacto con el terreno para facilitar el paso a este de las corrientes de defecto que puedan presentarse o la carga electrica que pueda tener.
- b) Linea de enlace con tierra: esta formada por los conductores que unen el electrodo o conjunto de electrodos con el punto de puesta a tierra.

c) Punto de puesta a tierra: es un punto situado fuera de REGISTRO Y ACREDITACION enlace con tierra y la linea principal de tierra.

El punto de puesta a tierra estara constituido por un dispositivo de conexión de puesta a tierra estara constituido por un dispositivo de conexión de puesta a tierra estara constituido por un dispositivo de conexión de puesta a tierra estara constituido por un dispositivo de conexión de puesta a tierra estara constituido por un dispositivo de conexión de puesta a tierra estara constituido por un dispositivo de conexión de puesta a tierra estara constituido por un dispositivo de conexión de puesta a tierra estara constituido por un dispositivo de conexión de puesta a tierra estara constituido por un dispositivo de conexión la union entre los conductores de las lineas de enlace y principal de tierra, de Contagio Official de Mentre la MMPG apropiados, separarse estas, con el fin de poder realizar la medida de la resistencia de tierra serrano martinez

23/12/2015

ANA LUISA DE GONZALO VIVANCOS

- 659 081 538

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 619 869 982

El Colegio Acredita la firma digital de los autores Número Fecha

Al realizar los cálculos de los diferentes circuitos a realizar en nuestro proyecto se especifica cuales de los mismos van dotados de conductores de protección, yendo estos colocados por el interior de cada uno de los circuitos que le correspondan. Estos conductores se identificarán del resto al ser de doble color verde-amarillo y se conectarán a las derivaciones de la línea principal de tierra, en los bornes situados en el cuadro de distribución y protección para tal

Con objeto de conseguir una equipotencialidad en todas las masas de los diferentes receptores metalicos, se ha previsto conectar a tierra las tuberías de agua, y en general, todas las conducciones metalicas de la instalación.

El conductor equipotencial estara preferentemente soldado y en su defecto solidariamente fijado mediante metales no férreos a las citadas canalizaciones y demas elementos conductores. Los conductores de protección de puesta a tierra y de conexión equipotencial deberan conectarse entre si.

Para la protección de nuestra instalación contra contactos indirectos, se utilizarán interruptores diferenciales de la capacidad adecuada para cada circuito, con una sensibilidad de 30mA, los cuales estaran colocados en los cuadros generales y los secundarios de distribución y protección, tal como puede verse en los esquemas unifilares del documento de planos de este mismo proyecto.

> **REGISTRO Y ACREDITACION** 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número 659 081 538

3.7 **CALCULOS ELECTRICOS JUSTIFICATIVOS**

Fórmulas

```
Emplearemos las siguientes:
```

Sistema Trifásico

 $I = Pc / 1,732 \times U \times Cos\phi \times R = amp (A)$

 $e = (L \times Pc / k \times U \times n \times S \times R) + (L \times Pc \times Xu \times Sen\phi / 1000 \times U \times n \times R \times Cos\phi) = voltios (V)$

Sistema Monofásico:

 $I = Pc / U \times Cos\phi \times R = amp (A)$

e = (2 x L x Pc / k x U x n x S x R) + (2 x L x Pc x Xu x Senφ / 1000 x U x n x R x Cosφ) = voltios (V)

En donde:

Pc = Potencia de Cálculo en Watios.

L = Longitud de Cálculo en metros.

e = Caída de tensión en Voltios.

K = Conductividad.

I = Intensidad en Amperios.

U = Tensión de Servicio en Voltios (Trifásica ó Monofásica).

S = Sección del conductor en mm².

 $Cos \varphi = Coseno de fi.$ Factor de potencia.

R = Rendimiento. (Para líneas motor).

 $n = N^{o}$ de conductores por fase.

 $Xu = Reactancia por unidad de longitud en m\Omega/m$.

Fórmula Conductividad Eléctrica

$$K = 1/\rho$$

 $\rho = \rho_{20}[1+\alpha (T-20)]$

$$T = T_0 + [(T_{max} - T_0) (I/I_{max})^2]$$

Siendo.

K = Conductividad del conductor a la temperatura T.

 ρ = Resistividad del conductor a la temperatura T.

 ρ_{20} = Resistividad del conductor a 20°C.

Cu = 0.018

A1 = 0.029

 $\alpha = \text{Coeficiente de temperatura:}$

Cu = 0.00392

A1 = 0.00403

T = Temperatura del conductor (°C).

 T_0 = Temperatura ambiente (°C):

Cables enterrados = 25°C

Cables al aire = 40°C

T_{max} = Temperatura máxima admisible del conductor (°C):

XLPE, $EPR = 90^{\circ}C$

 $PVC = 70^{\circ}C$

I = Intensidad prevista por el conductor (A).

I_{max} = Intensidad máxima admisible del conductor (A).

Fórmulas Sobrecargas

 $Ib \le In \le Iz$

 $I2 \le 1,45 \text{ Iz}$

Donde:

Ib: intensidad utilizada en el circuito.

Iz: intensidad admisible de la canalización según la norma UNE 20-460/5-523.

In: intensidad nominal del dispositivo de protección. Para los dispositivos de protección protección de protección regulación escogida.

12: intensidad que asegura efectivamente el funcionamiento del dispositivo de protection de protection de protection de la fina de l - a la intensidad de funcionamiento en el tiempo convencional, para los interrupto colegio de la Afguite colos de Murcia MMPG máximo).

REGISTRO Y ACREDITACION

23/12/2015 179500/52957

- a la intensidad de fusión en el tiempo convencional, para los fusibles (1,6 In).

Fórmulas compensación energía reactiva

 $\cos \emptyset = P/\sqrt{(P^2 + Q^2)}.$

 $tg\emptyset = Q/P$.

Qc = Px(tgØ1-tgØ2).

 $C = Qcx1000/U^2x\omega$; (Monofásico - Trifásico conexión estrella).

 $C = Qcx 1000/3xU^2x\omega$; (Trifásico conexión triángulo).

Siendo:

P = Potencia activa instalación (kW).

Q = Potencia reactiva instalación (kVAr).

Qc = Potencia reactiva a compensar (kVAr).

Ø1 = Angulo de desfase de la instalación sin compensar.

 \emptyset 2 = Angulo de desfase que se quiere conseguir.

U = Tensión compuesta (V).

 $\omega = 2xPixf$; f = 50 Hz.

C = Capacidad condensadores (F); $cx1000000(\mu F)$.

Fórmulas Resistencia Tierra

Placa enterrada

$$Rt = 0.8 \cdot \rho / P$$

Siendo,

Rt: Resistencia de tierra (Ohm)

ρ: Resistividad del terreno (Ohm·m)

P: Perímetro de la placa (m)

Pica vertical

$$Rt = \rho / L$$

Siendo,

Rt: Resistencia de tierra (Ohm)

ρ: Resistividad del terreno (Ohm·m)

L: Longitud de la pica (m)

Conductor enterrado horizontalmente

$$Rt = 2 \cdot \rho / L$$

Siendo,

Rt: Resistencia de tierra (Ohm)

ρ: Resistividad del terreno (Ohm·m)

L: Longitud del conductor (m)

Asociación en paralelo de varios electrodos

$$Rt = 1 / (Lc/2\rho + Lp/\rho + P/0.8\rho)$$

Rt: Resistencia de tierra (Ohm)

ρ: Resistividad del terreno (Ohm·m)

Lc: Longitud total del conductor (m)

Lp: Longitud total de las picas (m)

P: Perímetro de las placas (m)

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

659 081 538

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

3.7.1 Edificio I.E.S.

3.7.2.1 Zona pabellon

DEMANDA DE POTENCIAS

- Potencia total instalada:

CUARTO CALDERAS	16176 W
C.P.I.	7872 W
AP1- DESPACHO	370 W
AP4- PABELLON	450 W
AP7-ASEOS	248 W
AP2- PABELLON	450 W
AP3- PABELLON	450 W
AP8-ASEOS	572 W
AP5- PABELLON	450 W
AP6- PABELLON	450 W
AP9-ASEOS	572 W
EP1- AL. EXTERIOR	64 W
FP1- FEMEN.	2800 W
FP2- MASCUL.	2800 W
FP3- PROFES.	2800 W
ART1- AEROTERMO 1	736 W
ART2- AEROTERMO 2	736 W
ART3- AEROTERMO 3	736 W
ART5- AEROTERMO 5	736 W
ETT1- ESTRATIFICAD	600 W
MAE- MANDO AEROT	10 W
RCP1- VENT. ASEOS	1000 W
EX1- EXTRACTORES	2200 W
TOTAL.	43278 W

- Potencia Instalada Alumbrado (W): 4230
- Potencia Instalada Fuerza (W): 39048
- Potencia Máxima Admisible (W): 34917.12

Cálculo de la ACOMETIDA

- Tensión de servicio: 400 V.
- Canalización: Trenzados Posados
- Longitud: 200 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 43278 W.
- Potencia de cálculo: (Según ITC-BT-47 y ITC-BT-44): 5000x1.25+18327=24577 W.(Coef. de Simult.: 0.5)

I=24577/1,732x400x0.8=44.34 A.

Se eligen conductores Tetrapolares 4x50mm²Al Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE. Desig. UNE: RZ I.ad. a 40°C (Fc=1) 133 A. según ITC-BT-06

Caída de tensión:

Temperatura cable (°C): 45.56 e(parcial)=200x24577/31.26x400x50=7.86 V.=1.97 % e(total)=1.97% ADMIS (2% MAX.)

Cálculo de la DERIVACION INDIVIDUAL

- Tensión de servicio: 400 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 7 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 43278 W.
- Potencia de cálculo: (Según ITC-BT-47 y ITC-BT-44): 5000x1.25+27657.8=33907.8 W.(Coef. de Simult.: 0.7)

I=33907.8/1,732x400x0.8=61.18 A.

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ

ANA LUISA DE GONZALO VIVANCOS

Se eligen conductores Unipolares 4x16+TTx16mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol,RF - No propagador incendio y emisión humos y opacidad reducida,

resistente al fuego -. Desig. UNE: RZ1-K(AS+) I.ad. a 40°C (Fc=1) 73 A. según ITC-BT-19

Diámetro exterior tubo: 63 mm.

Caída de tensión:

Temperatura cable (°C): 75.12 e(parcial)=7x33907.8/45.68x400x16=0.81 V.=0.2 % e(total)=0.21% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 63 A.

Cálculo de la Línea: CUARTO CALDERAS

- Tensión de servicio: 400 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 30 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 16176 W.
- Potencia de cálculo: (Según ITC-BT-47 y ITC-BT-44): 736x1.25+10627.52=11547.52 W.(Coef. de Simult.: 0.7)

I=11547.52/1,732x400x0.8=20.83 A.

Se eligen conductores Unipolares 4x4+TTx4mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: RZ1-K(AS)

I.ad. a 40°C (Fc=1) 31 A. según ITC-BT-19

Diámetro exterior tubo: 25 mm.

Caída de tensión:

Temperatura cable (°C): 62.59

e(parcial)=30x11547.52/47.61x400x4=4.55 V.=1.14 %

e(total)=1.35% ADMIS (4.5% MAX.)

Protección Termica en Principio de Línea

I. Mag. Tetrapolar Int. 25 A.

Protección Térmica en Final de Línea

I. Mag. Tetrapolar Int. 25 A.

SUBCUADRO CUARTO CALDERAS

DEMANDA DE POTENCIAS

- Potencia total instalada:

ACG- ALUMBRADO		72 W
FCG- FUERZA		2800 W
CTC- CENTRAL		1000 W
CCL-CALDERA CALEF.		1000 W
BAC- BOMBA ANTIC.		1000 W
BIMP1- VEST.		736 W
BRSV1- RES. VEST.		736 W
BIMP2- PABELLON		736 W
BRSV2- RES. PABEL.		736 W
BIMP3- AULAS		736 W
BRSV3- RES. AULAS		736 W
BIMP4- PABELLON A		736 W
BRSV4- RES. PAB. A		736 W
BIMP5- PABELLON D		736 W
BRSV5- RES. PAB. D		736 W
BACS1- RETORNO		736 W
BACS2- RES RETORNO		736 W
BACS3- BOMBA INTER		736 W
BEST- IMPUL. SOLAR		736 W
	TOTAL	16176 W

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

- Potencia Instalada Alumbrado (W): 72
- Potencia Instalada Fuerza (W): 16104

Cálculo de la Línea:

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2872 W.
- Potencia de cálculo: (Según ITC-BT-44): 2929.6 W.(Coef. de Simult.: 1)

I=2929.6/230x0.8=15.92 A.

Se eligen conductores Unipolares 2x4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 31 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 47.91

e(parcial)=2x0.3x2929.6/50.08x230x4=0.04 V.=0.02 %

e(total)=1.37% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: ACG- ALUMBRADO

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 5 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 72 W.
- Potencia de cálculo: (Según ITC-BT-44):

72x1.8=129.6 W.

I=129.6/230x1=0.56 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.04

e(parcial)=2x5x129.6/51.51x230x1.5=0.07 V.=0.03 %

e(total)=1.4% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: FCG- FUERZA

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2800 W.
- Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y comparcidade control de la comparcidade control del control de la comparcidade control de la comparcidade control de la comparcidade control de la comparcidade control de la comparcidade control de la comparcidade control de la comparcidade control de la comparcidade control de la comparcida

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

REGISTRO Y ACREDITACION 23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Bl presente documento ha sido registrado y acreditado. Número Fecha

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x6x2800/48.73x230x2.5=1.2 V.=0.52 %

e(total)=1.89% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: CALDERAS

- Tensión de servicio: 230 V.

- Canalización: C-Unip.o Mult.sobre Pared - Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 3000 W.

- Potencia de cálculo:

3000 W.(Coef. de Simult.: 1)

I=3000/230x0.8=16.3 A.

Se eligen conductores Unipolares 2x4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40° C (Fc=1) 31 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 48.3

e(parcial)=2x0.3x3000/50.01x230x4=0.04 V.=0.02 %

e(total)=1.37% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: CTC- CENTRAL

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1000 W.
- Potencia de cálculo: 1000 W.

I=1000/230x0.8=5.43 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 42.01

e(parcial)=2x3x1000/51.14x230x2.5=0.2 V.=0.09 %

e(total)=1.45% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: CCL-CALDERA CALEF.

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 5 m; Cos φ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 1000 W.

- Potencia de cálculo: 1000 W.

I=1000/230x0.8=5.43 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 42.01

e(parcial)=2x5x1000/51.14x230x2.5=0.34 V.=0.15 %

e(total)=1.51% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: BAC-BOMBA ANTIC.

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 4 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1000 W. - Potencia de cálculo: 1000 W.

I=1000/230x0.8=5.43 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 42.01

e(parcial)=2x4x1000/51.14x230x2.5=0.27 V.=0.12 %

e(total)=1.48% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: BOMBAS PABELLON

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2944 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25+2208=3128 W.(Coef. de Simult.: 1)

I=3128/230x0.8=17 A.

Se eligen conductores Unipolares 2x4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 31 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 49.02

e(parcial)=2x0.3x3128/49.88x230x4=0.04 V.=0.02 %

e(total)=1.37% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: BIMP1- VEST.

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

- 659 081 538

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número Fecha

- Potencia de cálculo: (Según ITC-BT-47): 736x1.25=920 W.

I=920/230x0.8x1=5 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 41.7 e(parcial)=2x6x920/51.2x230x2.5x1=0.37 V.=0.16 % e(total)=1.53% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: BRSV1- RES. VEST.

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/230x0.8x1=5 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 41.7

e(parcial)=2x6x920/51.2x230x2.5x1=0.37 V.=0.16 %

e(total)=1.53% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: BIMP2- PABELLON

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/230x0.8x1=5 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 41.7 e(parcial)=2x6x920/51.2x230x2.5x1=0.37 V.=0.16 % e(total)=1.53% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

REGISTRO Y ACREDITACION

23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Pecha

Cálculo de la Línea: BRSV2- RES. PABEL.

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra - Longitud: 6 m; Cos ϕ : 0.8; Xu(m Ω /m): 0; R: 1

- Potencia a instalar: 736 W.

- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/230x0.8x1=5 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 41.7

e(parcial)=2x6x920/51.2x230x2.5x1=0.37 V.=0.16 %

e(total)=1.53% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: BOMBAS AULAS

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1472 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25+736=1656 W.(Coef. de Simult.: 1)

I=1656/230x0.8=9 A.

Se eligen conductores Unipolares 2x2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 23 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 44.59

e(parcial)=2x0.3x1656/50.67x230x2.5=0.03 V.=0.01 %

e(total)=1.36% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: BIMP3- AULAS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/230x0.8x1=5 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 41.7

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG Autores: MARTA SERRANO MARTINEZ

ANA LUISA DE GONZALO VIVANCOS

659 081 538

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número

23/12/2015

e(parcial)=2x6x920/51.2x230x2.5x1=0.37 V.=0.16 % e(total)=1.53% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: BRSV3- RES. AULAS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47): 736x1.25=920 W.

I=920/230x0.8x1=5 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida - Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 41.7

e(parcial)=2x6x920/51.2x230x2.5x1=0.37 V.=0.16 %

e(total)=1.53% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: BOMBAS PABELLON A

- Tensión de servicio: 400 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1472 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25+736=1656 W.(Coef. de Simult.: 1)

I=1656/1,732x400x0.8=2.99 A.

Se eligen conductores Unipolares 4x2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 40.61

e(parcial)=0.3x1656/51.4x400x2.5=0.01 V.=0 %

e(total)=1.35% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: BIMP4- PABELLON A

- Tensión de servicio: 400 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/1,732x400x0.8x1=1.66 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Pecha 659 081 538

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.24

e(parcial)=6x920/51.47x400x2.5x1=0.11 V.=0.03 %

e(total)=1.38% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: BRSV4- RES. PAB. A

- Tensión de servicio: 400 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/1,732x400x0.8x1=1.66 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.24

e(parcial)=6x920/51.47x400x2.5x1=0.11 V.=0.03 %

e(total)=1.38% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: BOMBAS PABELLON D

- Tensión de servicio: 400 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1472 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25+736=1656 W.(Coef. de Simult.: 1)

I=1656/1,732x400x0.8=2.99 A.

Se eligen conductores Unipolares 4x2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40° C (Fc=1) 21 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 40.61

e(parcial)=0.3x1656/51.4x400x2.5=0.01 V.=0 %

e(total)=1.35% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: BIMP5- PABELLON D

- Tensión de servicio: 400 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Pecha - 659 081 538

- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47): 736x1.25=920 W.

I=920/1,732x400x0.8x1=1.66 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.24 e(parcial)=6x920/51.47x400x2.5x1=0.11 V.=0.03 % e(total)=1.38% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: BRSV5- RES. PAB. D

- Tensión de servicio: 400 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/1,732x400x0.8x1=1.66 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.24

e(parcial)=6x920/51.47x400x2.5x1=0.11 V.=0.03 %

e(total)=1.38% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: BOMBAS ACS

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos ϕ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2208 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25+1472=2392 W.(Coef. de Simult.: 1)

I=2392/230x0.8=13 A.

Se eligen conductores Unipolares 2x4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 31 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 45.28 e(parcial)=2x0.3x2392/50.55x230x4=0.03 V.=0.01 % e(total)=1.36% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número 659 081 538

Cálculo de la Línea: BACS1- RETORNO

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra - Longitud: 6 m; Cos ϕ : 0.8; Xu(m Ω /m): 0; R: 1

- Potencia a instalar: 736 W.

- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/230x0.8x1=5 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 41.7

e(parcial)=2x6x920/51.2x230x2.5x1=0.37 V.=0.16 %

e(total)=1.53% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: BACS2- RES RETORNO

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 6 m; Cos ϕ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/230x0.8x1=5 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 41.7

e(parcial)=2x6x920/51.2x230x2.5x1=0.37 V.=0.16 %

e(total)=1.53% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: BACS3- BOMBA INTER

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/230x0.8x1=5 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emis

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

REGISTRO Y ACREDITA DE DOCUMENTOS PROFESIONALES 23/12/2015 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Fecha

Temperatura cable (°C): 41.7 e(parcial)=2x6x920/51.2x230x2.5x1=0.37 V.=0.16 % e(total)=1.53% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: BEST- IMPUL. SOLAR

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 8 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/230x0.8x1=5 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 41.7

e(parcial)=2x8x920/51.2x230x2.5x1=0.5 V.=0.22 %

e(total)=1.57% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

CALCULO DE EMBARRADO CUARTO CALDERAS

Datos

- Metal: Cu
- Estado pletinas: desnudas
- nº pletinas por fase: 1
- Separación entre pletinas, d(cm): 10
- Separación entre apoyos, L(cm): 25
- Tiempo duración c.c. (s): 0.5

Pletina adoptada

- Sección (mm²): 24
- Ancho (mm): 12
- Espesor (mm): 2
- Wx, Ix, Wy, Iy (cm^3, cm^4) : 0.048, 0.0288, 0.008, 0.0008
- I. admisible del embarrado (A): 110

a) Cálculo electrodinámico

 σ max = Ipcc² · L² / (60 · d · Wy · n) =1² · 25² / (60 · 10 · 0.008 · 1) = 129.294 <= 1200 kg/cm² Cu b)

Cálculo térmico, por intensidad admisible

Ical = 20.83 A Iadm = 110 A

c) Comprobación por solicitación térmica en cortocircuito

Ipcc = 1 kA

Icccs = Kc · S / (1000 · $\sqrt{\text{tcc}}$) = 164 · 24 · 1 / (1000 · $\sqrt{0.5}$) = 5.57 kA

REGISTR DE DOCUM

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: Marta Serrano Martinez
ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61

El Colegio Acredita la firma digital de los autores
El presente documento ha sido registrado y acreditado.

Número
Fecha

Cálculo de la Línea: C.P.I.

- Tensión de servicio: 400 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 35 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 7872 W.
- Potencia de cálculo: (Según ITC-BT-47 y ITC-BT-44): 5000x1.25+1343.68=7593.68 W.(Coef. de Simult.: 0.8)

I=7593.68/1,732x400x0.8=13.7 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol,RF - No propagador incendio y emisión humos y opacidad reducida,

resistente al fuego -. Desig. UNE: RZ1-K(AS+) I.ad. a 40°C (Fc=1) 23 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 57.74

e(parcial)=35x7593.68/48.4x400x2.5=5.49 V.=1.37 %

e(total)=1.58% ADMIS (4.5% MAX.)

Protección Termica en Principio de Línea

I. Mag. Tetrapolar Int. 16 A.

Protección Térmica en Final de Línea

I. Mag. Tetrapolar Int. 16 A.

SUBCUADRO

C.P.I.

DEMANDA DE POTENCIAS

- Potencia total instalada:

ACPI- ALUMBRADO 72 W FCPI- FUERZA 2800 W GCPI- GRUPO CPI 5000 W TOTAL.... 7872 W

- Potencia Instalada Alumbrado (W): 72
- Potencia Instalada Fuerza (W): 7800

Cálculo de la Línea:

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2872 W.
- Potencia de cálculo: (Según ITC-BT-44): 2929.6 W.(Coef. de Simult.: 1)

I=2929.6/230x0.8=15.92 A.

Se eligen conductores Unipolares 2x2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 23 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 54.38 e(parcial)=2x0.3x2929.6/48.96x230x2.5=0.06 V.=0.03 % e(total)=1.61% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Pecha

Cálculo de la Línea: ACPI- ALUMBRADO

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 5 m; Cos φ : 1; Xu(m Ω /m): 0;

- Potencia a instalar: 72 W.

- Potencia de cálculo: (Según ITC-BT-44):

72x1.8=129.6 W.

I=129.6/230x1=0.56 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.04

e(parcial)=2x5x129.6/51.51x230x1.5=0.07 V.=0.03 %

e(total)=1.64% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: FCPI- FUERZA

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2800 W.
- Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x6x2800/48.73x230x2.5=1.2 V.=0.52 %

e(total)=2.13% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: GCPI- GRUPO CPI

- Tensión de servicio: 400 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 5000 W.
- Potencia de cálculo: (Según ITC-BT-47):

5000x1.25=6250 W.

I=6250/1,732x400x0.8x1=11.28 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol,RF - No propagador incendio y emisión humos y opacidad reducida,

resistente al fuego -. Desig. UNE: RZ1-K(AS+)

I.ad. a 40°C (Fc=1) 23 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 52.02

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Pecha

23/12/2015

e(parcial)=6x6250/49.36x400x2.5x1=0.76 V.=0.19 % e(total)=1.77% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A. Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

CALCULO DE EMBARRADO C.P.I.

Datos

- Metal: Cu
- Estado pletinas: desnudas
- nº pletinas por fase: 1
- Separación entre pletinas, d(cm): 10
- Separación entre apoyos, L(cm): 25
- Tiempo duración c.c. (s): 0.5

Pletina adoptada

- Sección (mm²): 24
- Ancho (mm): 12
- Espesor (mm): 2
- Wx, Ix, Wy, Iy (cm^3, cm^4) : 0.048, 0.0288, 0.008, 0.0008
- I. admisible del embarrado (A): 110

a) Cálculo electrodinámico

$$\sigma$$
max = Ipcc² · L² / (60 · d · Wy · n) =0.57² · 25² /(60 · 10 · 0.008 · 1) = 42.023 <= 1200 kg/cm² Cu b)

Cálculo térmico, por intensidad admisible

Ical = 13.7 AIadm = 110 A

c) Comprobación por solicitación térmica en cortocircuito

Ipcc = 0.57 kAIcccs = Kc · S / ($1000 \cdot \text{vtcc}$) = $164 \cdot 24 \cdot 1 / (1000 \cdot \text{v}0.5) = 5.57 \text{ kA}$

Cálculo de la Línea: ALUMB. PABELLON 1

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1068 W.
- Potencia de cálculo: (Según ITC-BT-44): 1922.4 W.(Coef. de Simult.: 1)

I=1922.4/230x0.8=10.45 A.

Se eligen conductores Unipolares 2x4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 31 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 43.41 e(parcial)=2x0.3x1922.4/50.89x230x4=0.02 V.=0.01 % e(total)=0.22% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número Fecha

Cálculo de la Línea: AP1- DESPACHO

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 30 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 370 W.
- Potencia de cálculo: (Según ITC-BT-44):

370x1.8=666 W.

I=666/230x1=2.9 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 41.12

e(parcial)=2x30x666/51.31x230x1.5=2.26 V.=0.98 %

e(total)=1.2% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: AP4- PABELLON

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 40 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 450 W.
- Potencia de cálculo: (Según ITC-BT-44):

450x1.8=810 W.

I=810/230x1=3.52 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 41.65

e(parcial)=2x40x810/51.21x230x1.5=3.67 V.=1.59 %

e(total)=1.82% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Elemento de Maniobra:

Interruptor Bipolar In: 10 A.

Cálculo de la Línea: AP7-ASEOS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 21 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 248 W.
- Potencia de cálculo: (Según ITC-BT-44):

248x1.8=446.4 W.

I=446.4/230x1=1.94 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

REGISTRO Y ACREDITACION 23/12/2015 Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y comparcidade ceducidal es 129500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Bl presente documento ha sido registrado y acreditado. Número Fecha

Caída de tensión:

Temperatura cable (°C): 40.5 e(parcial)=2x21x446.4/51.42x230x1.5=1.06 V.=0.46 % e(total)=0.68% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: ALUMB. PABELLON 2

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1472 W.
- Potencia de cálculo: (Según ITC-BT-44): 2649.6 W.(Coef. de Simult.: 1)

I=2649.6/230x0.8=14.4 A.

Se eligen conductores Unipolares 2x4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 31 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 46.47

e(parcial)=2x0.3x2649.6/50.33x230x4=0.03 V.=0.01 %

e(total)=0.23% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: AP2- PABELLON

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 27 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 450 W.
- Potencia de cálculo: (Según ITC-BT-44):

450x1.8=810 W.

I=810/230x1=3.52 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida - Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 41.65

e(parcial)=2x27x810/51.21x230x1.5=2.48 V.=1.08 %

e(total)=1.3% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Elemento de Maniobra:

Interruptor Bipolar In: 10 A.

Cálculo de la Línea: AP3- PABELLON

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 30 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 450 W.
- Potencia de cálculo: (Según ITC-BT-44): 450x1.8=810 W.

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

I=810/230x1=3.52 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 41.65 e(parcial)=2x30x810/51.21x230x1.5=2.75 V.=1.2 % e(total)=1.42% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Elemento de Maniobra: Interruptor Bipolar In: 10 A.

Cálculo de la Línea: AP8-ASEOS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 26 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 572 W.
- Potencia de cálculo: (Según ITC-BT-44):

572x1.8=1029.6 W.

I=1029.6/230x1=4.48 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 42.67

e(parcial)=2x26x1029.6/51.02x230x1.5=3.04 V.=1.32 %

e(total)=1.55% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: ALUMB. PABELLON 2

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1472 W.
- Potencia de cálculo: (Según ITC-BT-44):

2649.6 W.(Coef. de Simult.: 1)

I=2649.6/230x0.8=14.4 A.

Se eligen conductores Unipolares 2x4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 31 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 46.47

e(parcial)=2x0.3x2649.6/50.33x230x4=0.03 V.=0.01 %

e(total)=0.23% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

REGISTRO Y ACREDITACION

23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61 El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Pecha

Cálculo de la Línea: AP5- PABELLON

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 48 m; Cos ϕ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 450 W.
- Potencia de cálculo: (Según ITC-BT-44):

450x1.8=810 W.

I=810/230x1=3.52 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 41.65

e(parcial)=2x48x810/51.21x230x1.5=4.4 V.=1.91 %

e(total)=2.14% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Elemento de Maniobra: Interruptor Bipolar In: 10 A.

Cálculo de la Línea: AP6- PABELLON

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 56 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 450 W.
- Potencia de cálculo: (Según ITC-BT-44):

450x1.8=810 W.

I=810/230x1=3.52 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 41.65

e(parcial)=2x56x810/51.21x230x1.5=5.13 V.=2.23 %

e(total)=2.46% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Elemento de Maniobra: Interruptor Bipolar In: 10 A.

Cálculo de la Línea: AP9-ASEOS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 13 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 572 W.
- Potencia de cálculo: (Según ITC-BT-44):

572x1.8=1029.6 W.

I=1029.6/230x1=4.48 A.

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

Colegio Oficial de Arquitectos de Murcia MMPG emisión humos y opacidad reducida -. Desig.

Autores: MARTA SERRANO MARTINEZ

23/12/2015

179500/52957

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19 Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 42.67 e(parcial)=2x13x1029.6/51.02x230x1.5=1.52 V.=0.66 % e(total)=0.89% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: EP1- AL. EXTERIOR

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 19 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 64 W.
- Potencia de cálculo: (Según ITC-BT-44):

64x1.8=115.2 W.

I=115.2/230x1=0.5 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.03

e(parcial)=2x19x115.2/51.51x230x1.5=0.25 V.=0.11 %

e(total)=0.32% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Elemento de Maniobra: Int.Crepuscular In: 10 A.

Cálculo de la Línea: FUERZA PABELLON

- Tensión de servicio: 230 V.

- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 8400 W.
- Potencia de cálculo:

6720 W.(Coef. de Simult.: 0.8)

I=6720/230x0.8=36.52 A.

Se eligen conductores Unipolares 2x6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 40 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 65.01 e(parcial)=2x0.3x6720/47.22x230x6=0.06 V.=0.03 %

e(total)=0.24% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 40 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61 El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número

Cálculo de la Línea: FP1- FEMEN.

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 22 m; Cos φ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 2800 W.

- Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x22x2800/48.73x230x2.5=4.4 V.=1.91 %

e(total)=2.15% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FP2- MASCUL.

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 16 m; Cos φ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 2800 W.

- Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x16x2800/48.73x230x2.5=3.2 V.=1.39 %

e(total)=1.63% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FP3- PROFES.

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 20 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2800 W.
- Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x20x2800/48.73x230x2.5=4 V.=1.74 %

e(total)=1.98% ADMIS (6.5% MAX.)

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número Fecha

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: AEROTERMOS

- Tensión de servicio: 400 V.

- Canalización: C-Unip.o Mult.sobre Pared

- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2944 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25+2208=3128 W.(Coef. de Simult.: 1)

I=3128/1,732x400x0.8=5.64 A.

Se eligen conductores Unipolares 4x10mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 50 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 40.38

e(parcial)=0.3x3128/51.45x400x10=0 V.=0 %

e(total)=0.21% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

Elemento de Maniobra: Contactor Tetrapolar In: 40 A.

Cálculo de la Línea: ART1- AEROTERMO 1

- Tensión de servicio: 400 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 8 m; Cos ϕ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/1,732x400x0.8x1=1.66 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.24

e(parcial)=8x920/51.47x400x2.5x1=0.14 V.=0.04 %

e(total)=0.25% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: ART2- AEROTERMO 2

- Tensión de servicio: 400 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 20 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/1,732x400x0.8x1=1.66 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Pecha

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.24 e(parcial)=20x920/51.47x400x2.5x1=0.36 V.=0.09 % e(total)=0.3% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: ART3- AEROTERMO 3

- Tensión de servicio: 400 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 42 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/1,732x400x0.8x1=1.66 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.24 e(parcial)=42x920/51.47x400x2.5x1=0.75 V.=0.19 % e(total)=0.4% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: ART5- AEROTERMO 5

- Tensión de servicio: 400 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 55 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 736 W.
- Potencia de cálculo: (Según ITC-BT-47):

736x1.25=920 W.

I=920/1,732x400x0.8x1=1.66 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.24 e(parcial)=55x920/51.47x400x2.5x1=0.98 V.=0.25 % e(total)=0.46% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: ETT1- ESTRATIFICAD

- Tensión de servicio: 400 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 2 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 600 W.

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61 El Colegio Acredita la firma digital de los autores Número Fecha 659 081 538

- Potencia de cálculo: (Según ITC-BT-47): 600x1.25=750 W.

I=750/1.732x400x0.8x1=1.35 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.16 e(parcial)=2x750/51.49x400x2.5x1=0.03 V.=0.01 % e(total)=0.22% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A. Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Elemento de Maniobra: Contactor Tetrapolar In: 20 A.

Cálculo de la Línea: MAE- MANDO AEROT

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 2 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 10 W.
- Potencia de cálculo: (Según ITC-BT-44): 10 W.

I=10/230x1=0.04 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40

e(parcial)=2x2x10/51.52x230x1.5=0 V.=0 %

e(total)=0.21% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Elemento de Maniobra: Interruptor Bipolar In: 20 A.

Cálculo de la Línea: RCP1- VENT. ASEOS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 5 m; Cos ϕ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 1000 W.
- Potencia de cálculo: (Según ITC-BT-47):

1000x1.25=1250 W.

I=1250/230x0.8x1=6.79 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emis

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

Temperatura cable (°C): 43.14 e(parcial)=2x5x1250/50.94x230x2.5x1=0.43 V.=0.19 % e(total)=0.4% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: EX1- EXTRACTORES

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 55 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 2200 W.
- Potencia de cálculo: (Según ITC-BT-47): 2200x1.25=2750 W.

I=2750/230x0.8x1=14.95 A.

Se eligen conductores Unipolares 2x6+TTx6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 36 A. según ITC-BT-19

Diámetro exterior tubo: 25 mm.

Caída de tensión:

Temperatura cable (°C): 45.17

e(parcial)=2x55x2750/50.57x230x6x1=4.33 V.=1.88 %

e(total)=2.1% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 25 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

CALCULO DE EMBARRADO CUADRO GENERAL DE MANDO Y PROTECCION

Datos

- Metal: Cu
- Estado pletinas: desnudas
- n° pletinas por fase: 1
- Separación entre pletinas, d(cm): 10
- Separación entre apoyos, L(cm): 25
- Tiempo duración c.c. (s): 0.5

Pletina adoptada

- Sección (mm²): 120
- Ancho (mm): 40
- Espesor (mm): 3
- Wx, Ix, Wy, Iy (cm^3, cm^4) : 0.8, 1.6, 0.06, 0.009
- I. admisible del embarrado (A): 420

a) Cálculo electrodinámico

 σ max = Ipcc² · L² / (60 · d · Wy · n) = 7.47² · 25² / (60 · 10 · 0.06 · 1) = 967.725 <= 1200 kg/cm² Cu b)

Cálculo térmico, por intensidad admisible

Ical = 61.18 AIadm = 420 A

c) Comprobación por solicitación térmica en cortocircuito

Ipcc = 7.47 kA

Icccs = Kc · S / (1000 · $\sqrt{\text{tcc}}$) = 164 · 120 · 1 / (1000 · $\sqrt{0.5}$) = 27.83 kA

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

Los resultados obtenidos se reflejan en las siguientes tablas:

Denominación	P.Cálculo	Dist.Cálc	Sección	I.Cálculo	I.Adm	C.T.Parc.	C.T.Total	Dimensiones(mm)
	(W)	(m)	(mm²)	(A)	(A)	(%)	(%)	Tubo,Canal,Band.
ACOMETIDA	24577	200	4x50Al	44.34	133	1.97	1.97	
DERIVACION IND.	33907.8	7	4x16+TTx16Cu	61.18	73	0.2	0.21	63
CUARTO CALDERAS	11547.52	30	4x4+TTx4Cu	20.83	31	1.14	1.35	25
C.P.I.	7593.68	35	4x2.5+TTx2.5Cu	13.7	23	1.37	1.58	20
ALUMB. PABELLON 1	1922.4	0.3	2x4Cu	10.45	31	0.01	0.22	
AP1-DESPACHO	666	30	2x1.5+TTx1.5Cu	2.9	15	0.98	1.2	16
AP4- PABELLON	810	40	2x1.5+TTx1.5Cu	3.52	15	1.59	1.82	16
AP7-ASEOS	446.4	21	2x1.5+TTx1.5Cu	1.94	15	0.46	0.68	16
ALUMB. PABELLON 2	2649.6	0.3	2x4Cu	14.4	31	0.01	0.23	
AP2- PABELLON	810	27	2x1.5+TTx1.5Cu	3.52	15	1.08	1.3	16
AP3- PABELLON	810	30	2x1.5+TTx1.5Cu	3.52	15	1.2	1.42	16
AP8-ASEOS	1029.6	26	2x1.5+TTx1.5Cu	4.48	15	1.32	1.55	16
ALUMB. PABELLON 2	2649.6	0.3	2x4Cu	14.4	31	0.01	0.23	
AP5- PABELLON	810	48	2x1.5+TTx1.5Cu	3.52	15	1.91	2.14	16
AP6- PABELLON	810	56	2x1.5+TTx1.5Cu	3.52	15	2.23	2.46	16
AP9-ASEOS	1029.6	13	2x1.5+TTx1.5Cu	4.48	15	0.66	0.89	16
EP1- AL. EXTERIOR	115.2	19	2x1.5+TTx1.5Cu	0.5	15	0.11	0.32	16
FUERZA PABELLON	6720	0.3	2x6Cu	36.52	40	0.03	0.24	
FP1-FEMEN.	2800	22	2x2.5+TTx2.5Cu	15.22	21	1.91	2.15	20
FP2-MASCUL.	2800	16	2x2.5+TTx2.5Cu	15.22	21	1.39	1.63	20
FP3-PROFES.	2800	20	2x2.5+TTx2.5Cu	15.22	21	1.74	1.98	20
AEROTERMOS	3128	0.3	4x10Cu	5.64	50	0	0.21	
ART1- AEROTERMO 1	920	8	4x2.5+TTx2.5Cu	1.66	18.5	0.04	0.25	20
ART2- AEROTERMO 2	920	20	4x2.5+TTx2.5Cu	1.66	18.5	0.09	0.3	20
ART3- AEROTERMO 3	920	42	4x2.5+TTx2.5Cu	1.66	18.5	0.19	0.4	20
ART5- AEROTERMO 5	920	55	4x2.5+TTx2.5Cu	1.66	18.5	0.25	0.46	20
ETT1-ESTRATIFICAD	750	2	4x2.5+TTx2.5Cu	1.35	18.5	0.01	0.22	20
MAE- MANDO AEROT	10	2	2x1.5+TTx1.5Cu	0.04	15	0	0.21	16
RCP1- VENT. ASEOS	1250	5	2x2.5+TTx2.5Cu	6.79	21	0.19	0.4	20
EX1-EXTRACTORES	2750	55	2x6+TTx6Cu	14.95	36	1.88	2.1	25

Cort	tocirc	uito
------	--------	------

Cortochedito									
Denominación	Longitud	Sección	IpccI	P de C	IpccF	tmcicc	tficc	Lmáx	Curvas válidas
	(m)	(mm²)	(kA)	(kA)	(A)	(sg)	(sg)	(m)	
DERIVACION IND.	7	4x16+TTx16Cu	11.72	15	3732.99	0.38			63;B,C,D
CUARTO CALDERAS	30	4x4+TTx4Cu	7.5	10	498.24	1.32			25;B,C
C.P.I.	35	4x2.5+TTx2.5Cu	7.5	10	284.05	1.58			16;B,C
ALUMB. PABELLON 1	0.3	2x4Cu	7.5		3511.16	0.02			
AP1-DESPACHO	30	2x1.5+TTx1.5Cu	7.05	10	202.62	0.72			10;B,C,D
AP4-PABELLON	40	2x1.5+TTx1.5Cu	7.05	10	154.13	1.25			10;B,C
AP7-ASEOS	21	2x1.5+TTx1.5Cu	7.05	10	282.65	0.37			10;B,C,D
ALUMB. PABELLON 2	0.3	2x4Cu	7.5		3511.16	0.02			
AP2-PABELLON	27	2x1.5+TTx1.5Cu	7.05	10	223.74	0.59			10;B,C,D
AP3-PABELLON	30	2x1.5+TTx1.5Cu	7.05	10	202.62	0.72			10;B,C,D
AP8-ASEOS	26	2x1.5+TTx1.5Cu	7.05	10	231.79	0.55			10;B,C,D
ALUMB. PABELLON 2	0.3	2x4Cu	7.5		3511.16	0.02			
AP5-PABELLON	48	2x1.5+TTx1.5Cu	7.05	10	129.36	1.78			10;B,C
AP6-PABELLON	56	2x1.5+TTx1.5Cu	7.05	10	111.45	2.4			10;B,C
AP9-ASEOS	13	2x1.5+TTx1.5Cu	7.05	10	435.52	0.16			10;B,C,D
EP1- AL. EXTERIOR	19	2x1.5+TTx1.5Cu	7.5	10	311.52	0.31			10;B,C,D
FUERZA PABELLON	0.3	2x6Cu	7.5	10	3582.21	0.04			40
FP1-FEMEN.	22	2x2.5+TTx2.5Cu	7.19	10	430.79	0.45			16;B,C,D
FP2-MASCUL.	16	2x2.5+TTx2.5Cu	7.19	10	567.33	0.26			16;B,C,D
FP3-PROFES.	20	2x2.5+TTx2.5Cu	7.19	10	468.36	0.38			16;B,C,D
AEROTERMOS	0.3	4x10Cu	7.5		3641.09	0.1			
ART1- AEROTERMO 1	8	4x2.5+TTx2.5Cu	7.31	10	986.55	0.08			10;B,C,D
ART2- AEROTERMO 2	20	4x2.5+TTx2.5Cu	7.31	10	469.39	0.38			10;B,C,D
ART3- AEROTERMO 3	42	4x2.5+TTx2.5Cu	7.31	10	239.26	1.44			10;B,C,D
ART5- AEROTERMO 5	55	4x2.5+TTx2.5Cu	7.31	10	185.51	2.4			10;B,C
ETT1-ESTRATIFICAD	2	4x2.5+TTx2.5Cu	7.5	10	2219.47	0.02			10;B,C,D
MAE- MANDO AEROT	2	2x1.5+TTx1.5Cu	7.5	10	1743.22	0.01			10;B,C,D
RCP1- VENT. ASEOS	5	2x2.5+TTx2.5Cu	7.5	10	372.52	0.04			10;B,C,D
EX1-EXTRACTORES	55	2x6+TTx6Cu	7.5	10	417.52	RE <u>G</u> IŞT	RO Y A	CREDITA	ACION $_{25; ext{B}}$,23/1
									470500

REGISTRO Y ACREDITACION 25;B23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61

869 982 - 659 081 538

Subcuadro CUARTO	CALDERAS									
Denominación	P.Cálculo	Dist.Cálc	Secci	ón	I.Cálcule	o I.Adı	n C.T.	Parc.	C.T.Total	Dimensiones(mm)
	(W)	(m)	(mm²		(A)	(A)		(%)	(%)	Tubo,Canal,Band.
	2929.6	0.3		2x4Cu	15.9	2	31	0.02	1.37	
ACG-ALUMBRADO	129.6	5	2x1.5+TT	x1.5Cu	0.5	6	15	0.03	1.4	16
FCG-FUERZA	2800	6	2x2.5+TT	x2.5Cu	15.2	2	21	0.52	1.89	20
CALDERAS	3000	0.3		2x4Cu	16.	3	31	0.02	1.37	
CTC-CENTRAL	1000	3	2x2.5+TT	x2.5Cu	5.4	3	21	0.09	1.45	20
CCL-CALDERA CALEF.	1000	5	2x2.5+TT	x2.5Cu	5.4	3	21	0.15	1.51	20
BAC-BOMBA ANTIC.	1000	4	2x2.5+TT	x2.5Cu	5.4	3	21	0.12	1.48	20
BOMBAS PABELLON	3128	0.3		2x4Cu	1		31	0.02	1.37	
BIMP1- VEST.	920	6	2x2.5+TT				21	0.16	1.53	20
BRSV1-RES. VEST.	920	6	2x2.5+TT				21	0.16	1.53	20
BIMP2- PABELLON	920	6	2x2.5+TT				21	0.16	1.53	20
BRSV2-RES. PABEL.	920	6	2x2.5+TT				21	0.16	1.53	20
BOMBAS AULAS	1656	0.3		2x2.5Cu			23	0.01	1.36	
BIMP3- AULAS	920	6	2x2.5+TT				21	0.16	1.53	20
BRSV3-RES. AULAS	920	6	2x2.5+TT				21	0.16	1.53	20
BOMBAS PABELLON A	1656	0.3		4x2.5Cu	2.9		21	0	1.35	
BIMP4- PABELLON A	920	6	4x2.5+TT		1.6		3.5	0.03	1.38	20
BRSV4- RES. PAB. A	920	6	4x2.5+TT		1.6		3.5	0.03	1.38	20
BOMBAS PABELLON D	1656	0.3		1x2.5Cu	2.9		21	0	1.35	20
BIMP5- PABELLON D	920	6	4x2.5+TT		1.6		3.5	0.03	1.38	20
BRSV5-RES. PAB. D	920	6	4x2.5+TT		1.6		3.5	0.03	1.38	20
BOMBAS ACS	2392	0.3	2.25.777	2x4Cu	1:		31	0.01	1.36	20
BACS1-RETORNO	920	6	2x2.5+TT				21	0.16	1.53	20
BACS2-RES RETORNO	920	6	2x2.5+TT 2x2.5+TT				21 21	0.16	1.53	20 20
BACS3-BOMBA INTER	920	6 8	2x2.5+11 2x2.5+TT				21	0.16 0.22	1.53 1.57	20
BEST-IMPUL. SOLAR	920	8	2X2.3+11	x2.5Cu		3	21	0.22	1.37	20
Cortocircuito										
Cortocircuito Denominación	Longitud	S	ección	IpccI	P de C	IpccF	tmcicc	tfic	cc Lmá	ix Curvas válidas
	Longitud (m)		ección nm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)			x Curvas válidas
								tfic		ix Curvas válidas
	(m)	(r	mm²)	(kA)		(A)	(sg)			ix Curvas válidas 10;B,C,D
Denominación	(m) 0.3	(r 2x1.5+	nm²) 2x4Cu	(kA) 1	(kA)	(A) 493.95	(sg) 0.87			
Denominación ACG- ALUMBRADO	(m) 0.3 5	(r 2x1.5+	nm²) 2x4Cu TTx1.5Cu	(kA) 1 0.99	(kA) 4.5	(A) 493.95 357.07	(sg) 0.87 0.23			10;B,C,D
Denominación ACG- ALUMBRADO FCG- FUERZA	(m) 0.3 5 6 0.3 3	2x1.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu TTx2.5Cu	(kA) 1 0.99 0.99	(kA) 4.5	(A) 493.95 357.07 387.11	(sg) 0.87 0.23 0.55			10;B,C,D
Denominación ACG-ALUMBRADO FCG-FUERZA CALDERAS	(m) 0.3 5 6 0.3 3 5	2x1.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu TTx2.5Cu 2x4Cu	(kA) 1 0.99 0.99	(kA) 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95	(sg) 0.87 0.23 0.55 0.87			10;B,C,D 16;B,C,D
Denominación ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL	(m) 0.3 5 6 0.3 3	2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu TTx2.5Cu 2x4Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99	(kA) 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05	(sg) 0.87 0.23 0.55 0.87 0.44			10;B,C,D 16;B,C,D 10;B,C,D
Denominación ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC-CENTRAL CCL-CALDERA CALEF. BAC-BOMBA ANTIC. BOMBAS PABELLON	(m) 0.3 5 6 0.3 3 5 4 0.3	2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu 2x4Cu	(kA) 1 0.99 0.99 1 0.99 0.99 0.99 1	(kA) 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D
Denominación ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC-CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST.	(m) 0.3 5 6 0.3 3 5 4 0.3 6	2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu 2x4Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 0.99 1 0.99	(kA) 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
Denominación ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST.	(m) 0.3 5 6 0.3 3 5 4 0.3 6	2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 0.99 1 0.99 0.99	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
Denominación ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 0.99 0.99 0.99	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
Denominación ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMPI- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2- RES. PABEL.	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 387.11	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
Denominación ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2- RES. PABEL. BOMBAS AULAS	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 6 0.3	2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 387.11 491.4	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
Denominación ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2- RES. PABEL. BOMBAS AULAS BIMP3- AULAS	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 6 0.3	2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.91 387.11 387.11 387.11 491.4 385.54	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55 0.55 0.34			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BIMP2- PABELLON BRSV2- RES. PABEL. BOMBAS AULAS BIMP3- AULAS BRSV3- RES. AULAS	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 6 6 6 6	2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu 2Tx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 387.11 491.4 385.54 385.54	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55 0.55 0.55 0.34			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2- RES. PABEL. BOMBAS AULAS BIMP3- AULAS BRSV3- RES. AULAS BOMBAS PABELLON A	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 6 0.3 6 6 0.3	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu 2Tx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu 4x2.5Cu 4x2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 387.11 491.4 385.54 491.4	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55 0.55 0.55 0.34 0.56 0.34			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2- RES. PABEL. BOMBAS AULAS BIMP3- AULAS BRSV3- RES. AULAS BOMBAS PABELLON A	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 6 6 6 0.3 6	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu 2Tx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 387.11 491.4 385.54 491.4 385.54	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55 0.55 0.34 0.56 0.34			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2-RES. PABEL. BOMBAS AULAS BIMP3- AULAS BIMP3- AULAS BRSV3- RES. AULAS BOMBAS PABELLON A BIMP4- PABELLON A BIMP4- PABELLON A	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 6 0.3 6 6 6 0.3 6 6 6 6 6 6 6 6 6 6 6 6 6	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu 2x4Cu 2x4Cu 2TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 387.11 491.4 385.54 491.4 385.54 491.4 385.54	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55 0.34 0.56 0.34 0.56 0.34			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2-RES. PABEL. BOMBAS AULAS BIMP3- AULAS BIMP3- AULAS BRSV3- RES. AULAS BOMBAS PABELLON A BIMP4- PABELLON A BIMP4- PABELLON A BRSV4- RES. PAB. A BOMBAS PABELLON D	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 6 0.3 6 6 0.3 6 6 6 0.3	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 4x2.5+	nm²) 2x4Cu TTx1.5Cu 2x4Cu 2x4Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu 4x2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 387.11 491.4 385.54 491.4 385.54 491.4	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55 0.34 0.56 0.34 0.56 0.34			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC-CENTRAL CCL-CALDERA CALEF. BAC-BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2- RES. PABEL. BOMBAS AULAS BIMP3- AULAS BRSV3- RES. AULAS BOMBAS PABELLON A BIMP4- PABELLON A BRSV4- RES. PAB. A BOMBAS PABELLON D BIMP5- PABELLON D	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 4x2.5+ 4x2.5+	nm²) 2x4Cu TTx1.5Cu 2x4Cu 2x4Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 387.11 387.11 387.13 387.14 491.4 385.54 491.4 385.54 491.4 385.54 491.4	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55 0.34 0.56 0.34 0.56 0.34 0.56			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2- RES. PABEL. BOMBAS AULAS BIMP3- AULAS BOMBAS PABELLON A BIMP4- PABELLON A BIMP4- PABELLON A BRSV4- RES. PAB. A BOMBAS PABELLON D BIMP5- PABELLON D BRSV5- RES. PAB. D	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 0.3 6 6 0.3 6 6 0.3 6 6 6 0.3 6 6 6 0.3 6 6	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 4x2.5+ 4x2.5+	nm²) 2x4Cu TTx1.5Cu 2x4Cu 2x4Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 491.4 385.54 491.4 385.54 491.4 385.54 491.4 385.54 491.4 385.54 385.54	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55 0.56 0.34 0.56 0.56 0.34 0.56 0.56 0.34 0.56			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2-RES. PABEL. BOMBAS AULAS BIMP3- AULAS BIMP3- AULAS BOMBAS PABELLON A BIMP4- PABELLON A BIMP4- PABELLON A BIMP5- PABELLON D BRSV4- RES. PAB. A BOMBAS PABELLON D BIMP5- PABELLON D BRSV5- RES. PAB. D BOMBAS ACS	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 4x2.5+ 4x2.5+ 4x2.5+	nm²) 2x4Cu TTx1.5Cu 2x4Cu TTx2.5Cu 2x4Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu TTx2.5Cu TTx2.5Cu 4x2.5Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 387.11 491.4 385.54 491.4 385.54 491.4 385.54 491.4 385.54 499.95	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.85 0.55 0.55 0.56 0.34 0.56 0.34 0.56 0.34 0.56 0.34 0.56 0.34 0.56 0.34 0.56 0.34			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC-CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2- RES. PABEL. BOMBAS AULAS BIMP3- AULAS BRSV3- RES. AULAS BOMBAS PABELLON A BIMP4- PABELLON A BIMP4- PABELLON A BRSV4- RES. PAB. A BOMBAS PABELLON D BIMP5- PABELLON D BIMP5- PABELLON D BRSV5- RES. PAB. D BOMBAS ACS BACS1-RETORNO	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 4x2.5+ 4x2.5+ 4x2.5+ 4x2.5+ 4x2.5+	nm²) 2x4Cu TTx1.5Cu 2x4Cu TTx2.5Cu 2x4Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 387.11 387.11 387.11 491.4 385.54 491.4 385.54 491.4 385.54 491.4 385.54 491.95 387.11	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55 0.56 0.34 0.56 0.34 0.56 0.34 0.56 0.34 0.56 0.34 0.56			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC- CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2- RES. PABEL. BOMBAS AULAS BIMP3- AULAS BIMP3- AULAS BOMBAS PABELLON A BIMP4- PABELLON A BIMP4- PABELLON D BRSV4- RES. PAB. A BOMBAS PABELLON D BIMP5- PABELLON D BIMP5- PABELLON D BRSV5- RES. PAB. D BOMBAS ACS BACS1- RETORNO BACS2- RES RETORNO	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6 6 6 0.3 6 6 6 0.3 6 6 6 0.3 6 6 6 6 0.3	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 4x2.5+ 4x2.5+ 4x2.5+ 4x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu 2x4Cu TTx2.5Cu 2x4Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 493.95 387.11 387.11 387.11 491.4 385.54 491.4 385.54 491.4 385.54 491.95 387.11 387.11 387.11	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.56 0.34 0.56 0.56 0.34 0.56 0.56 0.56 0.56 0.55 0.55 0.55			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D
ACG- ALUMBRADO FCG- FUERZA CALDERAS CTC-CENTRAL CCL-CALDERA CALEF. BAC- BOMBA ANTIC. BOMBAS PABELLON BIMP1- VEST. BRSV1- RES. VEST. BIMP2- PABELLON BRSV2- RES. PABEL. BOMBAS AULAS BIMP3- AULAS BRSV3- RES. AULAS BOMBAS PABELLON A BIMP4- PABELLON A BIMP4- PABELLON A BRSV4- RES. PAB. A BOMBAS PABELLON D BIMP5- PABELLON D BIMP5- PABELLON D BRSV5- RES. PAB. D BOMBAS ACS BACS1-RETORNO	(m) 0.3 5 6 0.3 3 5 4 0.3 6 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6 6 0.3 6	(r 2x1.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 2x2.5+ 4x2.5+ 4x2.5+ 4x2.5+ 4x2.5+ 2x2.5+ 2x2.5+	nm²) 2x4Cu TTx1.5Cu 2x4Cu TTx2.5Cu 2x4Cu TTx2.5Cu	(kA) 1 0.99 0.99 1 0.99 0.99 1 0.99 0.99 0.	(kA) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	(A) 493.95 357.07 387.11 493.95 434.05 401.58 417.19 387.11 387.11 387.11 491.4 385.54 491.4 385.54 491.4 385.54 491.4 385.54 491.95 387.11	(sg) 0.87 0.23 0.55 0.87 0.44 0.51 0.47 0.87 0.55 0.55 0.55 0.56 0.34 0.56 0.34 0.56 0.34 0.56 0.34 0.56 0.34 0.56			10;B,C,D 16;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D 10;B,C,D

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tiff: 61 9 869 982 - 659 081 538

Subcuadro C.P.I.										
Denominación	P.Cálculo	Dist.Cálc	Secci	ón	I.Cálculo	I.Adn	n C.T	Parc.	C.T.Total	Dimensiones(mm)
	(W)	(m)	(mm²))	(A)	(A)		(%)	(%)	Tubo,Canal,Band.
	2929.6	0.3	2	x2.5Cu	15.92		23	0.03	1.61	
ACPI- ALUMBRADO	129.6	5	2x1.5+TT	x1.5Cu	0.56		15	0.03	1.64	16
FCPI-FUERZA	2800	6	2x2.5+TT	x2.5Cu	15.22		21	0.52	2.13	20
GCPI- GRUPO CPI	6250	6	4x2.5+TT	x2.5Cu	11.28	1	23	0.19	1.77	20
Cortocircuito										
Denominación	Longitud	S	ección	IpccI	P de C	IpccF	tmcico	e tfi	cc Lmá	x Curvas válidas
	(m)	(1	nm²)	(kA)	(kA)	(A)	(sg)	(sg	g) (m)	
	0.3		2x2.5Cu	0.57		281.81	1.04	1		
ACPI- ALUMBRADO	5		TTx1.5Cu	0.57	4.5	231.23	0.56			10;B,C,D
FCPI- FUERZA	6	2x2.5+	TTx2.5Cu	0.57	4.5	243.46	1.39)		16;B,C
GCPI- GRUPO CPI	6	4x2.5+	TTx2.5Cu	0.57	4.5	245.13	2.13	3		16;B,C

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Zona aulas y cantina

DEMANDA DE POTENCIAS

- Potencia total instalada:

C.S.C1- CANTINA		24880 W
C.S.C2- ASCENSOR		5600 W
AC1-AULAS		270 W
AC4- PASILLOS		360 W
AC5- ASEOS		356 W
AC8- AULAS		756 W
AC2-AULAS		270 W
AC6- PASILLOS		360 W
AC9- AULAS		594 W
AC3-AULAS		270 W
AC7- PASILLOS		360 W
AC10- AULAS		594 W
RELOJ CONT. PASOS		10 W
EC1- AL. EXTERIOR		352 W
FC1- AULAS		2800 W
FC2- PASILLOS		2800 W
FC3- ASEOS		2800 W
FC4- AULAS		2800 W
FC5- AULAS		2800 W
OC1- ALARMA		1000 W
OC2- HUB		1000 W
RCC2- AULAS		1500 W
RCC3- PASILLOS		1000 W
RCC4- AULAS		1000 W
RCC5- AULAS		1000 W
RCC6- AULAS		1000 W
RFC2- AA DESPACHO		2000 W
	TOTAL	58532 W

- Potencia Instalada Alumbrado (W): 5932
- Potencia Instalada Fuerza (W): 52600
- Potencia Máxima Admisible (W): 49327.36

Cálculo de la ACOMETIDA

- Tensión de servicio: 400 V.
- Canalización: Trenzados Posados
- Longitud: 200 m; Cos ϕ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 58532 W.
- Potencia de cálculo: (Según ITC-BT-47 y ITC-BT-44): 5600x1.25+38688.72=45688.72 W.(Coef. de Simult.: 0.7)

I=45688.72/1,732x400x0.8=82.43 A.

Se eligen conductores Tetrapolares $3x95/50mm^2Al$ Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE. Desig. UNE: RZ I.ad. a 40°C (Fc=1) 207 A. según ITC-BT-06

Caída de tensión:

Temperatura cable (°C): 47.93 e(parcial)=200x45688.72/30.99x400x95=7.76 V.=1.94 % e(total)=1.94% ADMIS (2% MAX.)

Cálculo de la DERIVACION INDIVIDUAL

- Tensión de servicio: 400 V.
- Canalización: B1-Unip. Tubos Superf.o Emp. Obra
- Longitud: 25 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 58532 W.
- Potencia de cálculo: (Según ITC-BT-47 y ITC-BT-44): 5600x1.25+38688.72=45688.72 W.(Coef. de Simult.: 0.7)

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

I=45688.72/1,732x400x0.8=82.43 A.

Se eligen conductores Unipolares 4x25+TTx16mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: RZ1-K(AS)

I.ad. a 40°C (Fc=1) 95 A. según ITC-BT-19

Diámetro exterior tubo: 63 mm.

Caída de tensión:

Temperatura cable (°C): 77.65 e(parcial)=25x45688.72/45.32x400x25=2.52 V.=0.63 %e(total)=0.64% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Aut./Tet. In.: 100 A. Térmico reg. Int.Reg.: 89 A.

Cálculo de la Línea: C.S.C1- CANTINA

- Tensión de servicio: 400 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 42 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 24880 W.
- Potencia de cálculo: (Según ITC-BT-47 y ITC-BT-44): 5000x1.25+11889.6=18139.6 W.(Coef. de Simult.: 0.65)

I=18139.6/1,732x400x0.8=32.73 A.

Se eligen conductores Unipolares 4x10+TTx10mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: RZ1-K(AS)

I.ad. a 40°C (Fc=1) 54 A. según ITC-BT-19

Diámetro exterior tubo: 32 mm.

Caída de tensión:

Temperatura cable (°C): 58.37

e(parcial)=42x18139.6/48.29x400x10=3.94 V.=0.99 %

e(total)=1.62% ADMIS (4.5% MAX.)

Protección Termica en Principio de Línea

I. Mag. Tetrapolar Int. 40 A.

Protección Térmica en Final de Línea

I. Mag. Tetrapolar Int. 40 A.

SUBCUADRO C.S.C1- CANTINA

DEMANDA DE POTENCIAS

- Potencia total instalada:

AC11- CANTINA		208 W
AC14- ALMACEN		216 W
AC12- CANTINA		208 W
AC15- ASEOS		244 W
AC13- CANTINA		260 W
AC16- ASEOS		244 W
FC6- CANTINA		2800 W
FC7- CANTINA		2800 W
FC8- ALMACEN		2800 W
FC9- CAFETERA		5000 W
FC10- COCINA		4000 W
RCC1- VENTILACION		1100 W
RFC1- AA CANTINA		5000 W
	TOTAL	24880 W

- Potencia Instalada Alumbrado (W): 1380

- Potencia Instalada Fuerza (W): 23500

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha - 659 081 538

Cálculo de la Línea: ALUMB. CANTINA 1

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 424 W.
- Potencia de cálculo: (Según ITC-BT-44): 763.2 W.(Coef. de Simult.: 1)

I=763.2/230x0.8=4.15 A.

Se eligen conductores Unipolares 2x2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 23 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 40.98

e(parcial)=2x0.3x763.2/51.33x230x2.5=0.02 V.=0.01 %

e(total)=1.63% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: AC11- CANTINA

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 10 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 208 W.
- Potencia de cálculo: (Según ITC-BT-44):

208x1.8=374.4 W.

I=374.4/230x1=1.63 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.35

e(parcial)=2x10x374.4/51.45x230x1.5=0.42 V.=0.18 %

e(total)=1.81% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: AC14- ALMACEN

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 8 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 216 W.
- Potencia de cálculo: (Según ITC-BT-44):

216x1.8=388.8 W.

I=388.8/230x1=1.69 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y omisión humos y opacidad reducida -. D UNE: ES07Z1-K(AS)
Lad. a 40°C (Fc=1) 15 A. según ITC-BT-19

REGISTRO Y ACREDITACION
DE DOCUMENTOS PROFESIONALES

Diámetro exterior tubo: 16 mm.

Caída de tensión:

REGISTRO Y ACREDITACION 23/12/2015 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

Temperatura cable (°C): 40.38 e(parcial)=2x8x388.8/51.45x230x1.5=0.35 V.=0.15 % e(total)=1.78% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: ALUMB. CANTINA 2

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 452 W.
- Potencia de cálculo: (Según ITC-BT-44): 813.6 W.(Coef. de Simult.: 1)

I=813.6/230x0.8=4.42 A.

Se eligen conductores Unipolares 2x2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 23 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 41.11

e(parcial)=2x0.3x813.6/51.31x230x2.5=0.02 V.=0.01 %

e(total)=1.63% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: AC12- CANTINA

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 12 m; Cos ϕ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 208 W.
- Potencia de cálculo: (Según ITC-BT-44):

208x1.8=374.4 W.

I=374.4/230x1=1.63 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.35

e(parcial)=2x12x374.4/51.45x230x1.5=0.51 V.=0.22 %

e(total)=1.85% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: AC15- ASEOS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 16 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 244 W.
- Potencia de cálculo: (Según ITC-BT-44): 244x1.8=439.2 W.

I=439.2/230x1=1.91 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

REGIS DE DOC

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ
ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 619

El Colegio Acredita la firma digital de los autores Número Fecha 4.6 082 - 450 081 538

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.49

e(parcial)=2x16x439.2/51.43x230x1.5=0.79 V.=0.34 %

e(total)=1.98% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: ALUMB. CANTINA 3

- Tensión de servicio: 230 V.

- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 504 W.
- Potencia de cálculo: (Según ITC-BT-44): 907.2 W.(Coef. de Simult.: 1)

I=907.2/230x0.8=4.93 A.

Se eligen conductores Unipolares 2x2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 23 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 41.38

e(parcial)=2x0.3x907.2/51.26x230x2.5=0.02 V.=0.01 %

e(total)=1.63% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: AC13- CANTINA

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 10 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 260 W.
- Potencia de cálculo: (Según ITC-BT-44):

260x1.8=468 W.

I=468/230x1=2.03 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.55

e(parcial)=2x10x468/51.41x230x1.5=0.53 V.=0.23 %

e(total)=1.86% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: AC16- ASEOS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 20 m; Cos φ : 1; Xu(m Ω /m): 0;

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

- Potencia a instalar: 244 W.
- Potencia de cálculo: (Según ITC-BT-44): 244x1.8=439.2 W.

I=439.2/230x1=1.91 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.49 e(parcial)=2x20x439.2/51.43x230x1.5=0.99 V.=0.43 % e(total)=2.06% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: FUERZA CANTINA

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 8400 W.
- Potencia de cálculo:

6720 W.(Coef. de Simult.: 0.8)

I=6720/230x0.8=36.52 A.

Se eligen conductores Unipolares 2x6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 40 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 65.01

 $e(parcial) = 2x0.3x6720/47.22x230x6 = 0.06\ V. = 0.03\ \%$

e(total)=1.65% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 40 A.

Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: FC6- CANTINA

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 16 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2800 W.
- Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x16x2800/48.73x230x2.5=3.2 V.=1.39 %

e(total)=3.04% ADMIS (6.5% MAX.)

Prot. Térmica:

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha 659 081 538

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FC7- CANTINA

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 5 m; Cos φ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 2800 W. - Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x5x2800/48.73x230x2.5=1 V.=0.43 %

e(total)=2.09% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FC8- ALMACEN

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra

- Longitud: 9 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2800 W.
- Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x9x2800/48.73x230x2.5=1.8 V.=0.78 %

e(total)=2.43% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FC9- CAFETERA

- Tensión de servicio: 400 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 6 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 5000 W.
- Potencia de cálculo: 5000 W.

I=5000/1,732x400x0.8=9.02 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 47.13

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

e(parcial)=6x5000/50.21x400x2.5=0.6 V.=0.15 % e(total)=1.77% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A. Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: FC10- COCINA

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 8 m; Cos ϕ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 4000 W. - Potencia de cálculo: 4000 W.

I=4000/230x0.8=21.74 A.

Se eligen conductores Unipolares 2x6+TTx6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 36 A. según ITC-BT-19

Diámetro exterior tubo: 25 mm.

Caída de tensión:

Temperatura cable (°C): 50.94

e(parcial)=2x8x4000/49.55x230x6=0.94 V.=0.41 %

e(total)=2.03% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 25 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: RCC1- VENTILACION

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 4 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1

- Potencia a instalar: 1100 W.

- Potencia de cálculo: (Según ITC-BT-47):

1100x1.25=1375 W.

I=1375/230x0.8x1=7.47 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 43.8

e(parcial)=2x4x1375/50.81x230x2.5x1=0.38 V.=0.16 %

e(total)=1.79% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: RFC1- AA CANTINA

- Tensión de servicio: 400 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 30 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1

- Potencia a instalar: 5000 W.

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número Fecha

- Potencia de cálculo: (Según ITC-BT-47): 5000x1.25=6250 W.

I=6250/1.732x400x0.8x1=11.28 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 18.5 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 51.15 e(parcial)=30x6250/49.51x400x2.5x1=3.79 V.=0.95 % e(total)=2.57% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

CALCULO DE EMBARRADO C.S.C1- CANTINA

Datos

- Metal: Cu
- Estado pletinas: desnudas
- nº pletinas por fase: 1
- Separación entre pletinas, d(cm): 10
- Separación entre apoyos, L(cm): 25
- Tiempo duración c.c. (s): 0.5

Pletina adoptada

- Sección (mm²): 24
- Ancho (mm): 12
- Espesor (mm): 2
- Wx, Ix, Wy, Iy (cm^3, cm^4) : 0.048, 0.0288, 0.008, 0.0008
- I. admisible del embarrado (A): 110

a) Cálculo electrodinámico

$$\sigma max = Ipcc^2 \cdot L^2 / (60 \cdot d \cdot Wy \cdot n) = 1.46^2 \cdot 25^2 / (60 \cdot 10 \cdot 0.008 \cdot 1) = 278.14 <= 1200 \text{ kg/cm}^2 \text{ Cu} \ \underline{b})$$

Cálculo térmico, por intensidad admisible

Ical = 32.73 AIadm = 110 A

c) Comprobación por solicitación térmica en cortocircuito

Ipcc = 1.46 kA

Icccs = Kc · S / $(1000 \cdot \sqrt{\text{tcc}}) = 164 \cdot 24 \cdot 1 / (1000 \cdot \sqrt{0.5}) = 5.57 \text{ kA}$

Cálculo de la Línea: C.S.C2- ASCENSOR

- Tensión de servicio: 400 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 5 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 5600 W.
- Potencia de cálculo: (Según ITC-BT-47): 5600x1.25=7000 W.

I=7000/1,732x400x0.8x1=12.63 A.

Se eligen conductores Unipolares 4x6+TTx6mm²Cu

REGISTRO Y ACREDITACION

23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: RZ1-K(AS)

I.ad. a 40°C (Fc=1) 40 A. según ITC-BT-19

Diámetro exterior tubo: 25 mm.

Caída de tensión:

Temperatura cable (°C): 44.98

e(parcial)=5x7000/50.6x400x6x1=0.29 V.=0.07 %

e(total)=0.71% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: ALUMBRADO AULAS 1

- Tensión de servicio: 230 V.

- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1742 W.
- Potencia de cálculo: (Según ITC-BT-44):

3135.6 W.(Coef. de Simult.: 1)

I=3135.6/230x0.8=17.04 A.

Se eligen conductores Unipolares 2x6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 40 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 45.45

e(parcial)=2x0.3x3135.6/50.52x230x6=0.03 V.=0.01 %

e(total)=0.65% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: AC1-AULAS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 12 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 270 W.
- Potencia de cálculo: (Según ITC-BT-44):

270x1.8=486 W.

I=486/230x1=2.11 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.6

e(parcial)=2x12x486/51.41x230x1.5=0.66 V.=0.29 %

e(total)=0.94% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: AC4- PASILLOS

- Tensión de servicio: 230 V.

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número Fecha 659 081 538

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 20 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 360 W.
- Potencia de cálculo: (Según ITC-BT-44): 360x1.8=648 W.

I=648/230x1=2.82 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 41.06

e(parcial)=2x20x648/51.32x230x1.5=1.46 V.=0.64 %

e(total)=1.29% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Elemento de Maniobra:

Contactor Bipolar In: 20 A.

Cálculo de la Línea: AC5- ASEOS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 21 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 356 W.
- Potencia de cálculo: (Según ITC-BT-44):

356x1.8=640.8 W.

I=640.8/230x1=2.79 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 41.03

e(parcial)=2x21x640.8/51.32x230x1.5=1.52 V.=0.66 %

e(total)=1.31% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: AC8- AULAS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 40 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 756 W.
- Potencia de cálculo: (Según ITC-BT-44):

756x1.8=1360.8 W.

I=1360.8/230x1=5.92 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 44.67

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Pecha

e(parcial)=2x40x1360.8/50.66x230x1.5=6.23 V.=2.71 % e(total)=3.36% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: ALUMBRADO AULAS 2

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1224 W.
- Potencia de cálculo: (Según ITC-BT-44): 2203.2 W.(Coef. de Simult.: 1)

I=2203.2/230x0.8=11.97 A.

Se eligen conductores Unipolares 2x4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida - Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 31 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 44.48

e(parcial)=2x0.3x2203.2/50.69x230x4=0.03 V.=0.01 %

e(total)=0.65% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: AC2-AULAS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 15 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 270 W.
- Potencia de cálculo: (Según ITC-BT-44):

270x1.8=486 W.

I=486/230x1=2.11 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.6

e(parcial)=2x15x486/51.41x230x1.5=0.82 V.=0.36 %

e(total)=1.01% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: AC6- PASILLOS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 20 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 360 W.
- Potencia de cálculo: (Según ITC-BT-44): 360x1.8=648 W.

I=648/230x1=2.82 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Pecha

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 41.06

e(parcial)=2x20x648/51.32x230x1.5=1.46 V.=0.64 %

e(total)=1.29% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Elemento de Maniobra: Contactor Bipolar In: 20 A.

Cálculo de la Línea: AC9- AULAS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 43 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 594 W.
- Potencia de cálculo: (Según ITC-BT-44):

594x1.8=1069.2 W.

I=1069.2/230x1=4.65 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 42.88

e(parcial)=2x43x1069.2/50.98x230x1.5=5.23 V.=2.27 %

e(total)=2.92% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: ALUMBRADO AULAS 3

- Tensión de servicio: 230 V.

- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1224 W.
- Potencia de cálculo: (Según ITC-BT-44): 2203.2 W.(Coef. de Simult.: 1)

I=2203.2/230x0.8=11.97 A.

Se eligen conductores Unipolares 2x4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 31 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 44.48

e(parcial)=2x0.3x2203.2/50.69x230x4=0.03 V.=0.01 %

e(total)=0.65% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: AC3-AULAS

- Tensión de servicio: 230 V.

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 18 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 270 W.
- Potencia de cálculo: (Según ITC-BT-44): 270x1.8=486 W.

I=486/230x1=2.11 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40.6

e(parcial)=2x18x486/51.41x230x1.5=0.99 V.=0.43 %

e(total)=1.08% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: AC7- PASILLOS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 45 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 360 W.
- Potencia de cálculo: (Según ITC-BT-44):

360x1.8=648 W.

I=648/230x1=2.82 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 41.06

e(parcial)=2x45x648/51.32x230x1.5=3.29 V.=1.43 %

e(total)=2.08% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Elemento de Maniobra:

Contactor Bipolar In: 20 A.

Cálculo de la Línea: AC10- AULAS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 46 m; Cos φ : 1; Xu(m Ω /m): 0;
- Potencia a instalar: 594 W.
- Potencia de cálculo: (Según ITC-BT-44):

594x1.8=1069.2 W.

I=1069.2/230x1=4.65 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 42.88

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

23/12/2015

e(parcial)=2x46x1069.2/50.98x230x1.5=5.59 V.=2.43 % e(total)=3.08% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: RELOJ CONT. PASOS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 2 m; Cos φ : 1; Xu(m Ω /m): 0;

- Potencia a instalar: 10 W.

- Potencia de cálculo: (Según ITC-BT-44): 10 W.

I=10/230x1=0.04 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida - Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:

Temperatura cable (°C): 40

e(parcial)=2x2x10/51.52x230x1.5=0 V.=0 % e(total)=0.64% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Elemento de Maniobra: Int. Horario In: 10 A.

Cálculo de la Línea: EC1- AL. EXTERIOR

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 50 m; Cos φ : 1; Xu(m Ω /m): 0;

- Potencia a instalar: 352 W.

- Potencia de cálculo: (Según ITC-BT-44): 352x1.8=633.6 W.

I=633.6/230x1=2.75 A.

Se eligen conductores Unipolares 2x6+TTx6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

Lad. a 40°C (Fc=1) 36 A. según ITC-BT-19

Diámetro exterior tubo: 25 mm.

Caída de tensión:

Temperatura cable (°C): 40.18 e(parcial)=2x50x633.6/51.48x230x6=0.89 V.=0.39 % e(total)=1.03% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Elemento de Maniobra: Int.Crepuscular In: 10 A.

Cálculo de la Línea: FUERZA AULAS PBAJA

- Tensión de servicio: 230 V.

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 5600 W.
- Potencia de cálculo:

2800 W.(Coef. de Simult.: 0.5)

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 31 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 47.23 e(parcial)=2x0.3x2800/50.2x230x4=0.04 V.=0.02 %

e(total)=0.65% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 25 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: FC1- AULAS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 19 m; Cos φ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 2800 W. - Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x19x2800/48.73x230x2.5=3.8 V.=1.65 %

e(total)=2.3% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FC2- PASILLOS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 38 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2800 W.
- Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x38x2800/48.73x230x2.5=7.6 V.=3.3 %

e(total)=3.96% ADMIS (6.5% MAX.)

REGISTRO Y ACREDITACION

23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FUERZA AULAS PPISO

- Tensión de servicio: 230 V.

- Canalización: C-Unip.o Mult.sobre Pared

- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 8400 W.

- Potencia de cálculo:

6720 W.(Coef. de Simult.: 0.8)

I=6720/230x0.8=36.52 A.

Se eligen conductores Unipolares 2x6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 40 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 65.01

e(parcial)=2x0.3x6720/47.22x230x6=0.06 V.=0.03 %

e(total)=0.66% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 40 A.

Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: FC3- ASEOS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 17 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2800 W.
- Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x17x2800/48.73x230x2.5=3.4 V.=1.48 %

e(total)=2.14% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FC4- AULAS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra

- Longitud: 20 m; Cos φ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 2800 W.

- Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares $2x2.5+TTx2.5mm^2Cu$

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y comparada de contra de la contra dela contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra del contra de la contra del la

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

REGISTRO Y ACREDITACION 23/12/2015

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Bl presente documento ha sido registrado y acreditado. Número Fecha

Caída de tensión:

Temperatura cable (°C): 55.75 e(parcial)=2x20x2800/48.73x230x2.5=4 V.=1.74 % e(total)=2.4% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FC5- AULAS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 45 m; Cos φ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 2800 W. - Potencia de cálculo: 2800 W.

I=2800/230x0.8=15.22 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 55.75

e(parcial)=2x45x2800/48.73x230x2.5=8.99 V.=3.91 %

e(total)=4.58% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: OTROS USOS AULAS

- Tensión de servicio: 230 V.
- Canalización: C-Unip.o Mult.sobre Pared
- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 2000 W.
- Potencia de cálculo:

2000 W.(Coef. de Simult.: 1)

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 40 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 42.22

e(parcial)=2x0.3x2000/51.11x230x6=0.02 V.=0.01 %

e(total)=0.65% ADMIS (4.5% MAX.)

Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: OC1- ALARMA

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 1000 W.
- Potencia de cálculo: 1000 W.

I=1000/230x0.8=5.43 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número - 659 081 538

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 42.01

e(parcial)=2x3x1000/51.14x230x2.5=0.2 V.=0.09 %

e(total)=0.73% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: OC2- HUB

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

- Longitud: 18 m; Cos φ : 0.8; Xu(m Ω /m): 0;

- Potencia a instalar: 1000 W. - Potencia de cálculo: 1000 W.

I=1000/230x0.8=5.43 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 42.01

e(parcial)=2x18x1000/51.14x230x2.5=1.22 V.=0.53 %

e(total)=1.18% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: VENTILACION

- Tensión de servicio: 230 V.

- Canalización: C-Unip.o Mult.sobre Pared

- Longitud: 0.3 m; Cos φ : 0.8; Xu(m Ω /m): 0;
- Potencia a instalar: 5500 W.
- Potencia de cálculo: (Según ITC-BT-47):

1500x1.25+4000=5875 W.(Coef. de Simult.: 1)

I=5875/230x0.8=31.93 A.

Se eligen conductores Unipolares 2x6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 40 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 59.12

e(parcial)=2x0.3x5875/48.17x230x6=0.05 V.=0.02 %

e(total)=0.66% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 32 A.

Protección diferencial:

Inter. Dif. Bipolar Int.: 40 A. Sens. Int.: 30 mA. Clase AC.

Cálculo de la Línea: RCC2- AULAS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número Fecha 659 081 538

- Longitud: 14 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 1500 W.
- Potencia de cálculo: (Según ITC-BT-47):

1500x1.25=1875 W.

I=1875/230x0.8x1=10.19 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 47.06

e(parcial)=2x14x1875/50.23x230x2.5x1=1.82 V.=0.79 %

e(total)=1.45% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: RCC3- PASILLOS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 18 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 1000 W.
- Potencia de cálculo: (Según ITC-BT-47):

1000x1.25=1250 W.

I=1250/230x0.8x1=6.79 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 43.14

e(parcial)=2x18x1250/50.94x230x2.5x1=1.54 V.=0.67 %

e(total)=1.33% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: RCC4- AULAS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 25 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 1000 W.
- Potencia de cálculo: (Según ITC-BT-47):

1000x1.25=1250 W.

I=1250/230x0.8x1=6.79 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 43.14

e(parcial)=2x25x1250/50.94x230x2.5x1=2.13 V.=0.93 %

e(total)=1.59% ADMIS (6.5% MAX.)

REGISTRO Y ACREDITACION

23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Pecha

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: RCC5- AULAS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra - Longitud: 32 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1

- Potencia a instalar: 1000 W.

- Potencia de cálculo: (Según ITC-BT-47):

1000x1.25=1250 W.

I=1250/230x0.8x1=6.79 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 43.14

e(parcial)=2x32x1250/50.94x230x2.5x1=2.73 V.=1.19 %

e(total)=1.85% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: RCC6- AULAS

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 40 m; Cos φ : 0.8; Xu(m Ω /m): 0; R: 1
- Potencia a instalar: 1000 W.
- Potencia de cálculo: (Según ITC-BT-47):

1000x1.25=1250 W.

I=1250/230x0.8x1=6.79 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -. Desig.

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 43.14

e(parcial)=2x40x1250/50.94x230x2.5x1=3.41 V.=1.48 %

e(total)=2.15% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: RFC2- AA DESPACHO

- Tensión de servicio: 230 V.

- Canalización: B1-Unip. Tubos Superf. o Emp. Obra
- Longitud: 18 m; Cos ϕ : 0.8; Xu(m Ω/m): 0; R: 1
- Potencia a instalar: 2000 W.
- Potencia de cálculo: (Según ITC-BT-47):

2000x1.25=2500 W.

I=2500/230x0.8x1=13.59 A.

Se eligen conductores Unipolares 2x6+TTx6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida o Designador MMPG

UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 36 A. según ITC-BT-19

REGISTRO Y ACREDITATION DE DOCUMENTOS PROFESIONALES **REGISTRO Y ACREDITACION** 23/12/2015 179500/52957

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Bl presente documento ha sido registrado y acreditado. Número Fecha

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

Diámetro exterior tubo: 25 mm.

Caída de tensión: Temperatura cable (°C): 44.27 e(parcial)=2x18x2500/50.73x230x6x1=1.29 V.=0.56 % e(total)=1.2% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A. Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA. Clase AC.

CALCULO DE EMBARRADO CUADRO GENERAL DE MANDO Y PROTECCION

Datos

- Metal: Cu
- Estado pletinas: desnudas
- nº pletinas por fase: 1
- Separación entre pletinas, d(cm): 10
- Separación entre apoyos, L(cm): 25
- Tiempo duración c.c. (s): 0.5

Pletina adoptada

- Sección (mm²): 60
- Ancho (mm): 20
- Espesor (mm): 3
- Wx, Ix, Wy, Iy (cm^3, cm^4) : 0.2, 0.2, 0.03, 0.0045
- I. admisible del embarrado (A): 220

a) Cálculo electrodinámico

$$\sigma max = Ipcc^2 \cdot L^2 / (60 \cdot d \cdot Wy \cdot n) = 5.07^2 \cdot 25^2 / (60 \cdot 10 \cdot 0.03 \cdot 1) = 892.786 <= 1200 \text{ kg/cm}^2 \text{ Cu } \underline{b})$$

Cálculo térmico, por intensidad admisible

Ical = 82.43 AIadm = 220 A

c) Comprobación por solicitación térmica en cortocircuito

Ipcc = 5.07 kA

Icccs = Kc · S / ($1000 \cdot \sqrt{\text{tcc}}$) = $164 \cdot 60 \cdot 1 / (1000 \cdot \sqrt{0.5}) = 13.92 \text{ kA}$

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

23/12/2015

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

Los resultados obtenidos se reflejan en las siguientes tablas:

Cuadro General de Mand	do y Protecció	'n								
Denominación	P.Cálculo	Dist.Cálc	Secci	ón	I.Cálcul (A)	lo I.Adr	n C.T.P	arc.	C.T.Total	Dimensiones(mm)
: CO. (COL)	(W)	(m)	, ,	(mm²)		(A)		%)		Tubo,Canal,Band.
ACOMETIDA DEBIVACIONIND	45688.72	200		95/50Al	82.4			1.94	1.94	62
DERIVACION IND. C.S.C1-CANTINA	45688.72 18139.6	25 42	4x25+T7 4x10+T7		82.4 32.7			0.63 0.99	0.64 1.62	63 32
C.S.C2- ASCENSOR	7000	5		TX10Cu TTx6Cu	12.6			0.99	0.71	25
ALUMBRADO AULAS 1	3135.6	0.3		2x6Cu	17.0	04 4		0.01	0.65	-
AC1-AULAS	486	12	2x1.5+TT	Γx1.5Cu	2.1	11 1	15 0	0.29	0.94	16
AC4-PASILLOS	648	20	2x1.5+TT		2.8			0.64	1.29	16
ACS ALILAS	640.8	21	2x1.5+TT		2.7			0.66	1.31	16 16
AC8- AULAS ALUMBRADO AULAS 2	1360.8 2203.2	40 0.3	2x1.5+TT	2x4Cu	5.9 11.9			2.71 0.01	3.36 0.65	16
AC2-AULAS	486	15	2x1.5+TT		2.1			0.36	1.01	16
AC6-PASILLOS	648	20	2x1.5+TT	Γx1.5Cu	2.8	82 1	15 0	0.64	1.29	16
AC9- AULAS	1069.2	43	2x1.5+TT		4.6			2.27	2.92	16
ALUMBRADO AULAS 3	2203.2	0.3	े १ हरणा	2x4Cu	11.9			0.01	0.65	17
AC3-AULAS AC7-PASILLOS	486 648	18 45	2x1.5+TT 2x1.5+TT		2.1 2.8			0.43 1.43	1.08 2.08	16 16
AC10- AULAS	1069.2	45 46	2x1.5+11 2x1.5+TT		2.8 4.6			2.43	3.08	16 16
RELOJ CONT. PASOS	1009.2	2	2x1.5+TT		0.0		15	0	0.64	16
EC1- AL. EXTERIOR	633.6	50		TTx6Cu	2.7	75 3	36 0	0.39	1.03	25
FUERZA AULAS PBAJA	2800	0.3		2x4Cu	15.2			0.02	0.65	
FC1- AULAS	2800	19	2x2.5+TT		15.2			1.65	2.3	20
FC2-PASILLOS FUERZA AULAS PPISO	2800 6720	38	2x2.5+TT		15.2 36.5			3.3 0.03	3.96	20
FUERZA AULAS PPISO FC3- ASEOS	6720 2800	0.3 17	2x2.5+TT	2x6Cu Γx2.5Cu	36.5 15.2			0.03 1.48	0.66 2.14	20
FC4- AULAS	2800	20	2x2.5+11 2x2.5+TT		15.2			1.74	2.14	20
FC5- AULAS	2800	45	2x2.5+TT		15.2			3.91	4.58	20
OTROS USOS AULAS	2000	0.3		2x6Cu	10.8	87 4	40 0	0.01	0.65	
OC1- ALARMA	1000	3	2x2.5+TT		5.4			0.09	0.73	20
OC2-HUB	1000	18	2x2.5+TT		5.4			0.53	1.18	20
VENTILACION RCC2- AULAS	5875 1875	0.3 14	2x2.5+TT	2x6Cu Γx2 5Cu	31.9 10.1			0.02 0.79	0.66 1.45	20
RCC2- AULAS RCC3- PASILLOS	1875	18	2x2.5+11 2x2.5+TT		6.7			0.79	1.45	20 20
RCC4- AULAS	1250	25	2x2.5+TT		6.7			0.93	1.59	20
RCC5- AULAS	1250	32	2x2.5+TT	Γx2.5Cu	6.7	79 2	21 1	1.19	1.85	20
RCC6- AULAS	1250	40	2x2.5+TT		6.7			1.48	2.15	20
RFC2- AA DESPACHO	2500	18	2x6+1	TTx6Cu	13.5	,9	36 0	0.56	1.2	25
Cortocircuito										
Denominación	Longitud	S	Sección	IpccI	P de C	IpccF	tmcicc	tfice	c Lmá	ix Curvas válidas
Donomina	(m)		mm²)	(kA)	(kA)	(A)	(sg)	(sg)		A Curran
DERIVACION IND.	25	4x25+	+TTx16Cu	11.82	15	2535.36	1.99	•		100;B,C,D
C.S.C1-CANTINA	42		+TTx10Cu	5.09	6	730.77	3.83			40;B,C
C.S.C2- ASCENSOR	5	4xt	6+TTx6Cu	5.09		1704.9	0.25			16;B,C,D
ALUMBRADO AULAS 1 AC1-AULAS	0.3	2v1 5₁	2x6Cu +TTx1.5Cu	5.09 4.95		2463.69 441.6	0.08			10.D C D
AC1-AULAS AC4-PASILLOS	12 20		+TTx1.5Cu +TTx1.5Cu	4.95 4.95	6 6	441.6 285.2	0.15 0.37			10;B,C,D 10;B,C,D
AC5- ASEOS	21		+TTx1.5Cu +TTx1.5Cu	4.95		273.1	0.37			10,B,C,D 10;B,C,D
AC8- AULAS	40		+TTx1.5Cu	4.95		151.25	1.3			10;B,C
ALUMBRADO AULAS 2	0.3		2x4Cu	5.09		2429.33	0.04			
AC2-AULAS	15		+TTx1.5Cu	4.88		365.5	0.22			10;B,C,D
AC6-PASILLOS	20 43		+TTx1.5Cu +TTx1.5Cu	4.88 4.88		284.72 141.18	0.37 1.49			10;B,C,D 10:B C
AC9- AULAS ALUMBRADO AULAS 3	0.3	Δ Λ1. υ,	+TTx1.5Cu 2x4Cu	4.88 5.09		141.18 2429.33	0.04			10;B,C
AC3-AULAS	18	2x1.5+	+TTx1.5Cu	4.88		312.34	0.04			10;B,C,D
AC7-PASILLOS	45		+TTx1.5Cu	4.88		135.25	1.63			10;B,C
AC10- AULAS	46		+TTx1.5Cu	4.88	6	132.47	1.7			10;B,C
RELOJ CONT. PASOS	2		+TTx1.5Cu	5.09		1423.81	0.01			10;B,C,D
EC1- AL. EXTERIOR	50 0.3	2Xt	6+TTx6Cu	5.09		429.1	2.59			10;B,C,D
FUERZA AULAS PBAJA FC1- AULAS	0.3 19	2x2.5+	2x4Cu +TTx2.5Cu	5.09 4.88		2429.33 459.31	0.04 0.39			25 16;B,C,D
FC2-PASILLOS	38		+TTx2.5Cu +TTx2.5Cu	4.88		253.36	1.29			16;B,C,D
FUERZA AULAS PPISO	0.3		2x6Cu	5.09		1463:59	0.08			40
FC3- ASEOS	17		+TTx2.5Cu	4.95	6	5€3/.\5	REGIST	RO Y	ACREDI	ITACION _{5;B,C,} 23/12/2015
FC4- AULAS	20		+TTx2.5Cu	4.95						SIONALES _{16;1} ,79500/52957
FC5- AULAS	45	2x2.5+	+TTx2.5Cu	4.95		217.72	Colegio	Oficia ^t	ıl de Arqu	itectos de ^l MBr€ia ^{MMPG}
OTROS USOS AULAS OC1- ALARMA	0.3 3	2x2.5±	2x6Cu +TTx2.5Cu	5.09 4.95		2463.69 4644tore	0.08 res:₀₩₩₽т	ra seri	RANO MAR ⁻	TINEZ 16:B,C,D O VIVANCOS
OCI-ALAKWA	3	۱ د.کی	11 A2.JCu	4.75	U	1404.07	YANA L	.UISA D	E GONZALO	O VIVANCOS ^{D,C,D}

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61

869 982 - 659 081 538

OC2-HUB	18	2x2.5+	TTx2.5Cu	4.95	6	481.18	0.36			16;B,C,D
VENTILACION	0.3		2x6Cu	5.09	6	2463.69	0.08			32
RCC2- AULAS	14	2x2.5+	TTx2.5Cu	4.95	6	586.23	0.24			16;B,C,D
RCC3-PASILLOS	18	2x2.5+	TTx2.5Cu	4.95	6	481.18	0.36			10;B,C,D
RCC4- AULAS	25	2x2.5+	TTx2.5Cu	4.95	6	366.28	0.62			10;B,C,D
RCC5- AULAS	32	2x2.5+	TTx2.5Cu	4.95	6	295.67	0.95			10;B,C,D
RCC6- AULAS	40	2x2.5+	TTx2.5Cu	4.95	6	242.29	1.41			10;B,C,D
RFC2- AA DESPACHO	18	2x6	5+TTx6Cu	5.09	6	917.98	0.56			16;B,C,D
Subcuadro C.S.C1- CA	NTINA									
Denominación	P.Cálculo	Dist.Cálc	Secci	ión	I.Cálcul	o I.Adr	n C.T.F	Parc.	C.T.Total	Dimensiones(mm)
	(W)	(m)	(mm²	2)	(A)	(A)	(9	%)	(%)	Tubo, Canal, Band.
ALUMB. CANTINA 1	763.2	0.3	` 2	2x2.5Cu	4.1	5 É	23 (0.01	1.63	
AC11-CANTINA	374.4	10	2x1.5+T7	Γx1.5Cu	1.6	3	15	0.18	1.81	16
AC14- ALMACEN	388.8	8	2x1.5+T7	Γx1.5Cu	1.6	9	15	0.15	1.78	16
ALUMB. CANTINA 2	813.6	0.3	2	2x2.5Cu	4.4	2	23	0.01	1.63	
AC12-CANTINA	374.4	12	2x1.5+T7	Γx1.5Cu	1.6	3	15 (0.22	1.85	16
AC15- ASEOS	439.2	16	2x1.5+T7	Γx1.5Cu	1.9	1	15 (0.34	1.98	16
ALUMB. CANTINA 3	907.2	0.3	2	2x2.5Cu	4.9	3	23	0.01	1.63	
AC13-CANTINA	468	10	2x1.5+T7	Γx1.5Cu	2.0	3	15 (0.23	1.86	16
AC16- ASEOS	439.2	20	2x1.5+T7	Γx1.5Cu	1.9	1	15	0.43	2.06	16
FUERZA CANTINA	6720	0.3		2x6Cu	36.5	2 .	10	0.03	1.65	
FC6-CANTINA	2800	16	2x2.5+T7	Γx2.5Cu	15.2	2	21	1.39	3.04	20
FC7-CANTINA	2800	5	2x2.5+T7	Γx2.5Cu	15.2	2	21	0.43	2.09	20
FC8- ALMACEN	2800	9	2x2.5+T7	Γx2.5Cu	15.2	2	21	0.78	2.43	20
FC9-CAFETERA	5000	6	4x2.5+T7	Γx2.5Cu	9.0	2 18	.5	0.15	1.77	20
FC10-COCINA	4000	8	2x6+7	TTx6Cu	21.7	4	36	0.41	2.03	25
RCC1-VENTILACION	1375	4	2x2.5+T7	Γx2.5Cu	7.4	7 :	21	0.16	1.79	20
RFC1- AA CANTINA	6250	30	4x2.5+T7	Γx2.5Cu	11.2	8 18	.5	0.95	2.57	20
Cortocircuito										
Denominación	Longitud	S	ección	IpccI	P de C	IpccF	tmcicc	tfi	cc Lmá	x Curvas válidas
	(m)	(1	nm²)	(kA)	(kA)	(A)	(sg)	(sg	g) (m)	
ALUMB. CANTINA 1	0.3		2x2.5Cu	1.47		716.16	0.16			
AC11-CANTINA	10	2x1.5+	TTx1.5Cu	1.44	4.5	339.19	0.26			10;B,C,D
AC14- ALMACEN	8	2x1.5+	TTx1.5Cu	1.44	4.5	379.11	0.21			10;B,C,D
ALUMB. CANTINA 2	0.3		2x2.5Cu	1.47		716.16	0.16			
AC12-CANTINA	12	2x1.5+	TTx1.5Cu	1.44	4.5	306.87	0.32			10;B,C,D
AC15- ASEOS	16	2x1.5+	TTx1.5Cu	1.44	4.5	257.75	0.45			10;B,C,D
ALUMB. CANTINA 3	0.3		2x2.5Cu	1.47		716.16	0.16			
AC13-CANTINA	10	2x1.5+	TTx1.5Cu	1.44	4.5	339.19	0.26			10;B,C,D
AC16- ASEOS	20	2x1.5+	TTx1.5Cu	1.44	4.5	222.18	0.6			10;B,C,D
FUERZA CANTINA	0.3		2x6Cu	1.47	4.5	724.61	0.91			40
FC6-CANTINA	16		TTx2.5Cu	1.46	4.5	348.45	0.68			16;B,C,D
FC7-CANTINA	5		TTx2.5Cu	1.46	4.5	541.87	0.28			16;B,C,D
FC8- ALMACEN	9		TTx2.5Cu	1.46	4.5	450.87	0.41			16;B,C,D
FC9-CAFETERA	6		TTx2.5Cu	1.47	4.5	518.96	0.31			16;B,C,D
FC10- COCINA	8		5+TTx6Cu	1.47	4.5	595.71	1.34			25;B,C,D
RCC1- VENTILACION	4		TTx2.5Cu	1.47	4.5	574.48	0.25			16;B,C,D
RFC1- AA CANTINA	30	4x2.5+	TTx2.5Cu	1.47	4.5	240.25	1.43			16;B,C

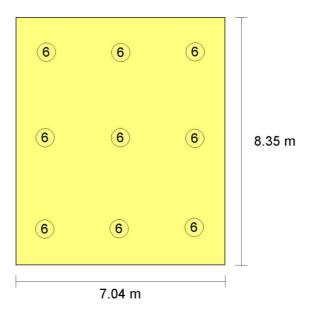
REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS


3.8 **CALCULOS LUMINOTECNICOS**

3.8.1 Edificio I.E.S.

RECINTO					
Referencia:	AULA (Aula)	Planta:	PLANTA BA	AIA	
Superficie:	58.7 m ²	Altura libre:	3.90 m	Volumen:	229.0 m ³

Alumbrado normal	
Altura del plano de trabajo:	1.00 m
Altura para la comprobación de deslumbramiento (UGR):	0.85 m
Coeficiente de reflectancia en suelos:	0.20
Coeficiente de reflectancia en paredes:	0.50
Coeficiente de reflectancia en techos:	0.70
Factor de mantenimiento:	0.80
Índice del local (K):	2.01
Número mínimo de puntos de cálculo:	16

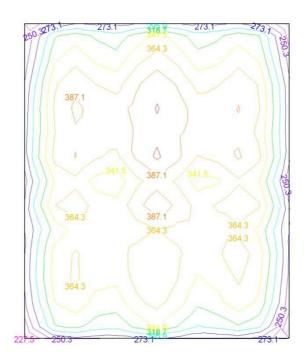
Disposición de las luminarias

Тіро	Cantidad	Descripción	Flujo Iuminoso (Im)	Rendimiento (%)	Potencia total (W)
6	9	Luminaria de techo, de 597x597x85 mm, para 3 lámparas fluorescentes TL de 18 W, modelo OD-3441 3x18W AF TL "ODEL- LUX"	4050	71	9 x 76.0
					Total = 684.0 W

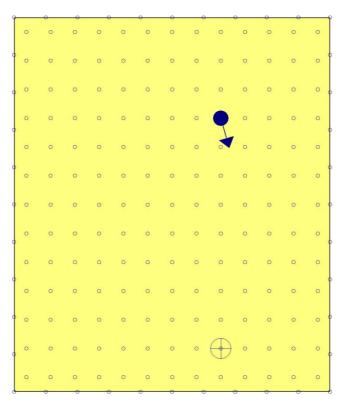
Valores de cálculo obtenidos Iluminancia mínima: 324.25 lux REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 63.6179500/52957 Iluminancia media horizontal mantenida: Índice de deslumbramiento unificado (UGR): Colegio Oficial de Arquitectos de Murcia MMPG Autores: MARTA SERRANO MARTINEZ
ANA LUISA DE GONZALO VIVANC**89**.18 % Valor de eficiencia energética de la instalación (VEEI): Factor de uniformidad:

Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia


Tif: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado.


Número Fecha

869 982 - 659 081 538 Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

Valores calculados de iluminancia

Posición de los valores pésimos calculados

⊕ Iluminancia mínima (324.25 lux)

← Índice de deslumbramiento unificado (UGR = 15.00) Puntos de cálculo (Número de puntos de cálculo: 209)

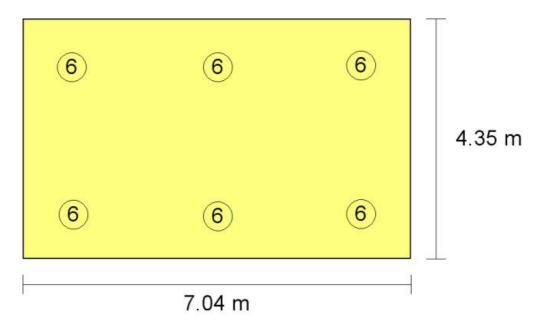
REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS


Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número 869 982 - 659 081 538

RECINTO					
Referencia:	AULA DESDOBLE P.BAJA (Aula)	Planta:	PLANTA E	BAJA	
Superficie:	30.6 m ²	Altura libre:	3.90 m	Volumen:	119.3 m³

Alumbrado normal	
Altura del plano de trabajo:	1.00 m
Altura para la comprobación de deslumbramiento (UGR):	0.85 m
Coeficiente de reflectancia en suelos:	0.20
Coeficiente de reflectancia en paredes:	0.50
Coeficiente de reflectancia en techos:	0.70
Factor de mantenimiento:	0.80
Índice del local (K):	1.41
Número mínimo de puntos de cálculo:	9

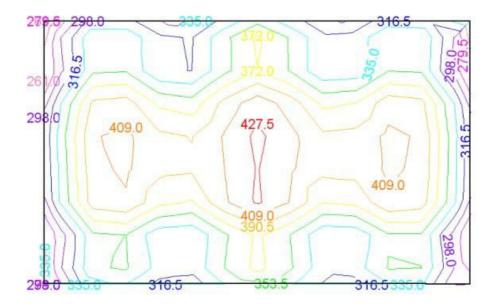
Disposición de las luminarias

Tipo	Cantidad	Descripción	Flujo Iuminoso (Im)	Rendimiento (%)	Potencia total (W)
6	6	Luminaria de techo, de 597x597x85 mm, para 3 lámparas fluorescentes TL de 18 W, modelo OD-3441 3x18W AF TL "ODEL- LUX"	4050	71	6 x 76.0
					Total = 456.0 W

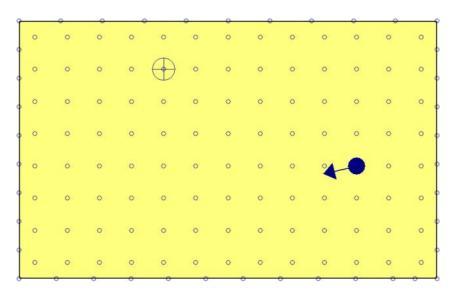
Valores de cálculo obtenidos	
Iluminancia mínima:	316.01 lux
lluminancia media horizontal mantenida:	380.19 lux
Índice de deslumbramiento unificado (UGR):	14.00
Valor de eficiencia energética de la instalación (VEEI):	3.90 W/m ²
Factor de uniformidad:	83.12 %

REGISTRO Y ACREDITACION 23/12/2015

DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia ^{MMPG}


Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez


C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Ilf: 61 9 869 982 - 659 081 538

Valores calculados de iluminancia

Posición de los valores pésimos calculados

- Iluminancia mínima (316.01 lux)
- ← Índice de deslumbramiento unificado (UGR = 14.00) Puntos de cálculo (Número de puntos de cálculo: 144)

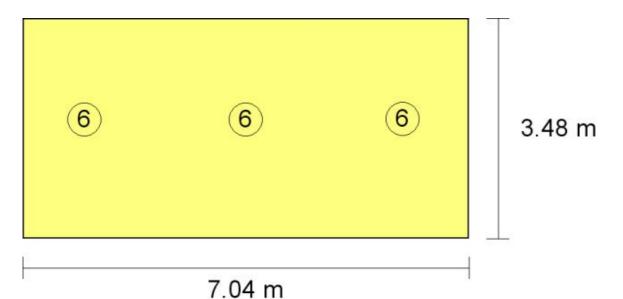
23/12/2015

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Acquitectos de Murcia MMPG


RECINTO

Referencia: Planta: DESPACHO PABELLON (Despacho) PLANTA BAJA

Superficie: Altura libre: 24.5 m² 3.90 m Volumen: $95.5 \, m^3$

Alumbrado normal	
Altura dal plana da trabaja.	1 00
Altura del plano de trabajo:	1.00 m
Altura para la comprobación de deslumbramiento (UGR):	0.85 m
Coeficiente de reflectancia en suelos:	0.20
Coeficiente de reflectancia en paredes:	0.50
Coeficiente de reflectancia en techos:	0.70
Factor de mantenimiento:	0.80
Índice del local (K):	1.23
Número mínimo de puntos de cálculo:	9

Disposición de las luminarias

Tipo	Cantidad	Descripción	Flujo Iuminoso (Im)	Rendimiento (%)	Potencia total (W)
6	3	Luminaria de techo, de 597x597x85 mm, para 3 lámparas fluorescentes TL de 18 W, modelo OD-3441 3x18W AF TL "ODEL- LUX"	4050	71	3 x 76.0
			•		Total = 228.0 W

Valores de cálculo obtenidos	
Iluminancia mínima:	254.73 lux
Iluminancia media horizontal mantenida:	300.61 lux
Índice de deslumbramiento unificado (UGR):	15.00
Valor de eficiencia energética de la instalación (VEEI):	3.00 W/m ²
Factor de uniformidad:	84.74 %

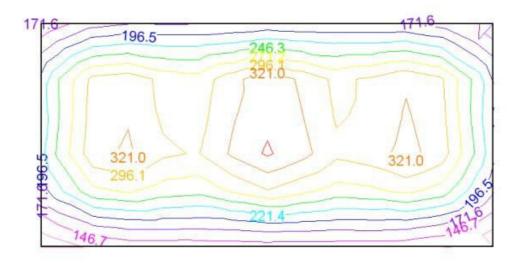
REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES **REGISTRO Y ACREDITACION** 23/12/2015 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

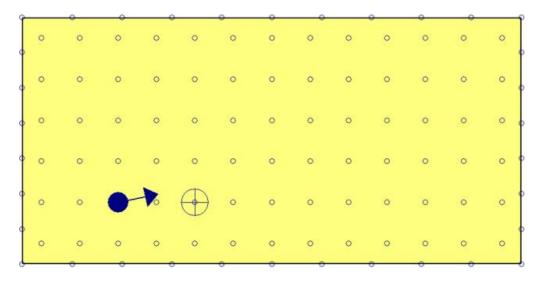
Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia


Tif: 61

869 982 - 659 081 538


Número Fecha

1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

Valores calculados de iluminancia

Posición de los valores pésimos calculados

- Iluminancia mínima (254.73 lux)
- ← Índice de deslumbramiento unificado (UGR = 15.00) Puntos de cálculo (Número de puntos de cálculo: 112)

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tif: 61

1 El Colegio Acredita la firma digital de los autores
El presente documento ha sido registrado y acreditado.

Número
Fecha

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

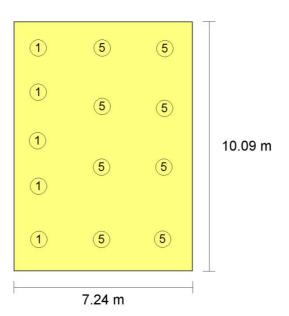
1 1 61

1 1 61

1 1 61

1 1 61

1 1 61


1 1 61

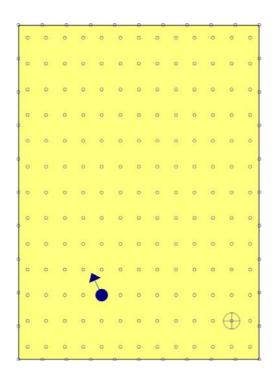
1 1 61

1 1 61 Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

RECINTO					
Referencia:	CANTINA PABELLON (Cafetería)	Planta:	PLANTA	BAJA	
Superficie:	73.0 m ²	Altura libre:	3.90 m	Volumen:	284.7 m³
Alumbrado no	ormal				
Altura del plai	no de trabajo:				0.00 m
Altura para la	comprobación de deslumbramiento (UGR):				0.85 m
Coeficiente de	e reflectancia en suelos:				0.20
Coeficiente de	e reflectancia en paredes:				0.50
Coeficiente de	Coeficiente de reflectancia en techos:				
Factor de mar	ntenimiento:				0.80
Índice del loc	al (K):				1.45
Número mínin	no de puntos de cálculo:				9

Disposición de las luminarias

Tipo	Cantidad	Descripción	Flujo luminoso (Im)	Rendimiento (%)	Potencia total (W)
1	5	Luminaria de techo Downlight, de 260 mm de diámetro y 100 mm de altura, para 2 lámparas fluorescentes compactas dobles TC-D de 26 W, modelo LD-DL/E 240 2x26W TC-D "L&D"		68	5 x 52.0
5	Ω	Luminaria de empotrar Downlight, de 260x260x160 mm, para 2 lámparas fluorescentes compactas dobles TC-DEL de 26 W, rendimiento 50%, modelo OD-3652 QL 2x26W HF C/P TC-DEL Basic "ODEL-LUX"	3600	50	8 x 55.0
					Total = 700.0 W


Valores de cálculo obtenidos	
lluminancia mínima:	189.02 lux
lluminancia media horizontal mantenida:	281.72 lux
Índice de deslumbramiento unificado (UGR):	REGISTRO Y ACREDITACION 23/12/201
Valor de eficiencia energética de la instalación (VEEI): Factor de uniformidad:	DE DOCUMENTOS PROFESIONALES 40 W9300/5295 Colegio Oficial de Arquitectos de Murcia MMPO
	Autores: MARTA SERRANO MARTINEZ

ANA LUISA DE GONZALO VIVANCOS

Valores calculados de iluminancia

Posición de los valores pésimos calculados

⊕ Iluminancia mínima (189.02 lux)

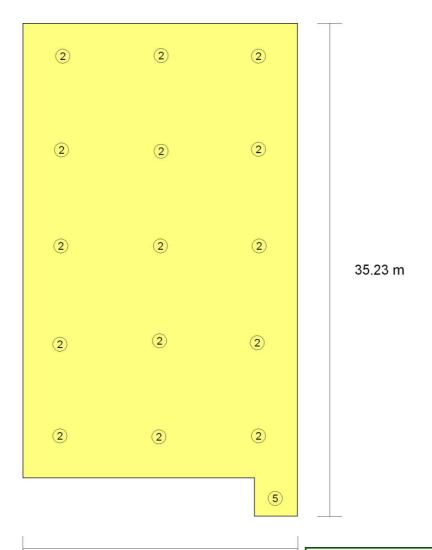
← Índice de deslumbramiento unificado (UGR = 21.00) Puntos de cálculo (Número de puntos de cálculo: 209)

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Acquitectos de Murcia MMPG


Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Picha El presente documento ha sido registrado y acreditado. Pecha 982 - 659 081 538

RECINTO					
Referencia:	PABELLON (Gimnasio)	Planta:	PLANTA B	AJA	
Superficie:	645.8 m ²	Altura libre:	8.10 m	Volumen:	5227.7 m ³

Alumbrado normal	
Altura del plano de trabajo:	0.00 m
Altura para la comprobación de deslumbramiento (UGR):	0.85 m
Coeficiente de reflectancia en suelos:	0.20
Coeficiente de reflectancia en paredes:	0.50
Coeficiente de reflectancia en techos:	0.70
Factor de mantenimiento:	0.80
Índice del local (K):	1.77
Número mínimo de puntos de cálculo:	9

Disposición de las luminarias

19.60 m

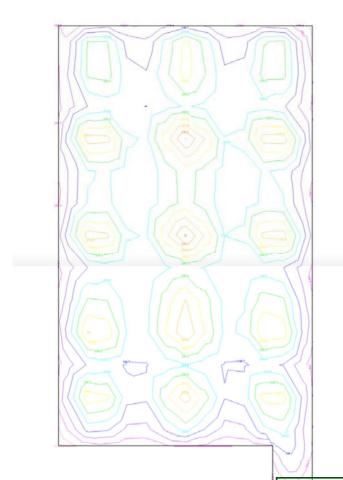
REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES

179500/52957

Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS


Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez
C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tif: 61
1869 982 - 659 081 538

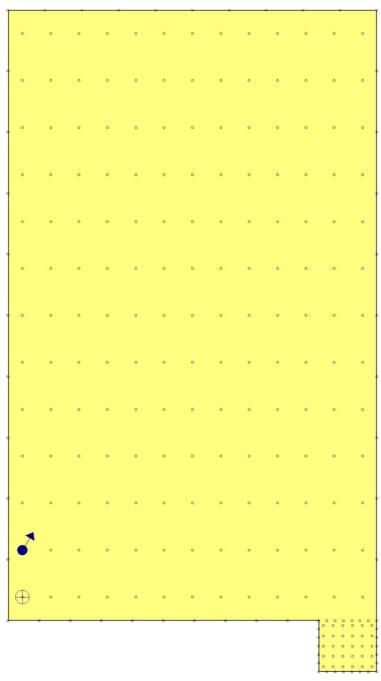
Tipo	Cantidad	Descripción	Flujo luminoso (lm)	Rendimiento (%)	Potencia total (W)
2	15	Luminaria suspendida tipo Downlight, de 320 mm y 452 mm de altura, para lámpara de halogenuros metálicos bipin HIT de 150 W, modelo Miniyes 1x150W HIT Reflector Cristal Transparente "LAMP"	14200	77	15 x 179.4
5	1	Luminaria de empotrar Downlight, de 260x260x160 mm, para 2 lámparas fluorescentes compactas dobles TC-DEL de 26 W, rendimiento 50%, modelo OD-3652 QL 2x26W HF C/P TC-DEL Basic "ODEL-LUX"	3600	50	1 x 55.0
	Į.		l .	ı.	Total = 2746.0 W

Valores de cálculo obtenidos	
Iluminancia mínima:	155.91 lux
Iluminancia media horizontal mantenida:	214.42 lux
Índice de deslumbramiento unificado (UGR):	21.00
Valor de eficiencia energética de la instalación (VEEI):	1.90 W/m ²
Factor de uniformidad:	72.71 %

Valores calculados de iluminancia

REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957
MMPG

Colegio Oficial de Arquitectos de Murcia MMPG


Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tiff: 61 9 869 982 - 659 081 538

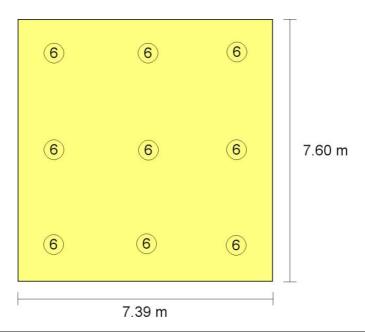
Posición de los valores pésimos calculados

⊕ Iluminancia mínima (155.91 lux)

findice de deslumbramiento unificado (UGR = 21.00)

Puntos de cálculo (Número de puntos de cálculo:

272)


Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Picha El presente documento ha sido registrado y acreditado. Pecha 982 - 659 081 538

RECINTO					
Referencia:	AULA 1 (Aula)	Planta:	PLANTA PIS	:O	
Superficie:	56.2 m ²	Altura libre:	3.70 m	Volumen:	207 8 m ³

Alumbrado normal	
Altimo del mismo de tratación	1.00
Altura del plano de trabajo:	1.00 m
Altura para la comprobación de deslumbramiento (UGR):	0.85 m
Coeficiente de reflectancia en suelos:	0.20
Coeficiente de reflectancia en paredes:	0.50
Coeficiente de reflectancia en techos:	0.70
Factor de mantenimiento:	0.80
Índice del local (K):	1.97
Número mínimo de puntos de cálculo:	9

Disposición de las luminarias

Tipo	Cantidad	Descripción	Flujo Iuminoso (Im)	Rendimiento (%)	Potencia total (W)
6		Luminaria de techo, de 597x597x85 mm, para 3 lámparas fluorescentes TL de 18 W, modelo OD-3441 3x18W AF TL "ODEL- LUX"	4050	71	9 x 76.0
					Total = 684.0 W

Valores de cálculo obtenidos	
Iluminancia mínima:	301.15 lu
Iluminancia media horizontal mantenida:	372.14 lu
Índice de deslumbramiento unificado (UGR):	14.0
Valor de eficiencia energética de la instalación (VEEI):	3.20 W/n

Factor de uniformidad:

REGISTRO Y ACREDITACION 0.92 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tif: 61

1 El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado.

Número Fecha

1 1 5 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

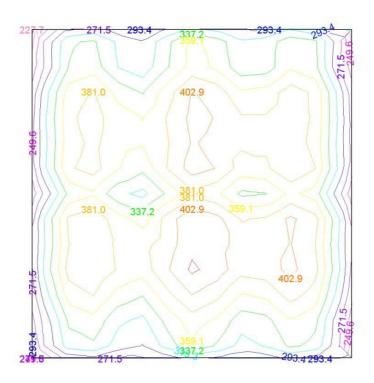
1 1 61

1 1 61

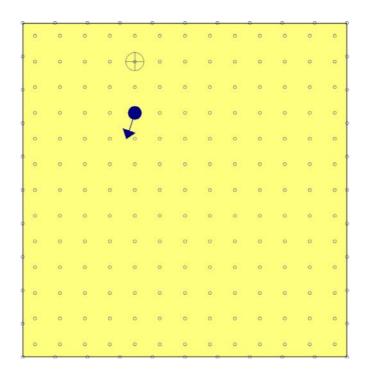
1 1 61

1 1 61

1 1 61


1 1 61

1 1 61


1 1 61

1 1 Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

Valores calculados de iluminancia

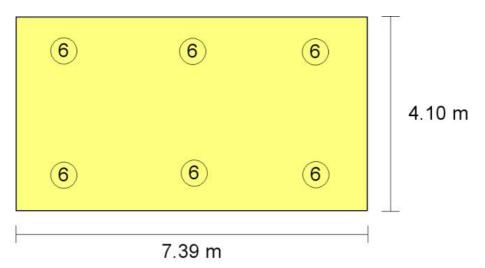
Posición de los valores pésimos calculados

⊕ Iluminancia mínima (301.15 lux)

← Índice de deslumbramiento unificado (UGR = 14.00) Puntos de cálculo (Número de puntos de cálculo: 209) а

REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES


179500/52957

Arquitectos de Murcia MMPG

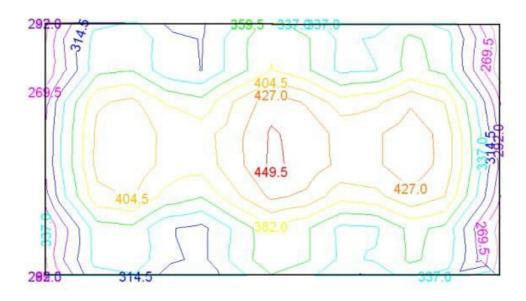
RECINTO					
Referencia:	AULA DESDOBLE PPISO (Aula)	Planta:	PLANTA F	PISO	
Superficie:	30.2 m ²	Altura libre:	3.70 m	Volumen:	111.7 m ³

Alumbrado normal	
Altura del plano de trabajo:	1.00 m
Altura para la comprobación de deslumbramiento (UGR):	0.85 m
Coeficiente de reflectancia en suelos:	0.20
Coeficiente de reflectancia en paredes:	0.50
Coeficiente de reflectancia en techos:	0.70
Factor de mantenimiento:	0.80
Índice del local (K):	1.39
Número mínimo de puntos de cálculo:	9

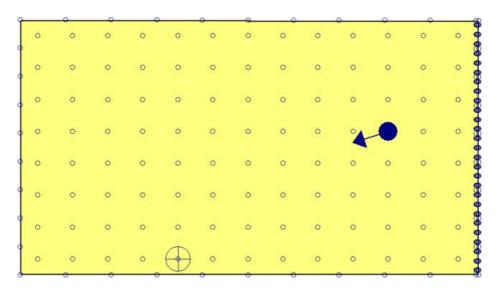
Disposición de las luminarias

Tipo	Cantidad	Descripción	Flujo luminoso (lm)	Rendimiento (%)	Potencia total (W)
6		Luminaria de techo, de 597x597x85 mm, para 3 lámparas fluorescentes TL de 18 W, modelo OD-3441 3x18W AF TL "ODEL- LUX"	4050	71	6 x 76.0
					Total = 456 0 W

Valores de cálculo obtenidos	
Iluminancia mínima:	307.82 lux
Iluminancia media horizontal mantenida:	375.63 lux
Índice de deslumbramiento unificado (UGR):	14.00
Valor de eficiencia energética de la instalación (VEEI):	4.00 W/m ²
Factor de uniformidad:	81.95 %


REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES


179500/52957

Arquitectos de Murcia MMPG

Valores calculados de iluminancia

Posición de los valores pésimos calculados

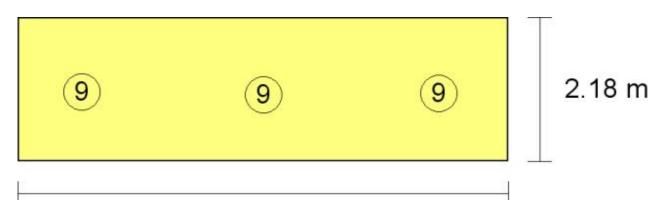
- ⊕ Iluminancia mínima (307.82 lux)
- ← Índice de deslumbramiento unificado (UGR = 14.00) Puntos de cálculo (Número de puntos de cálculo: 297)

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

23/12/2015 179500/52957

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez


RECINTO

Referencia: **DESPACHO PPISO (Despacho)** Planta: PLANTA PISO

Superficie: Altura libre: 3.70 m Volumen: 16.1 m² 59.6 m³

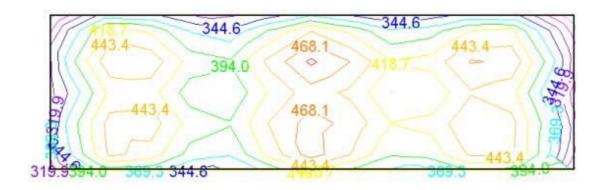
Alumbrado normal	
Altura del plano de trabajo:	1.00
, ,	1.00 m
Altura para la comprobación de deslumbramiento (UGR):	0.85 m
Coeficiente de reflectancia en suelos:	0.20
Coeficiente de reflectancia en paredes:	0.50
Coeficiente de reflectancia en techos:	0.70
Factor de mantenimiento:	0.80
Índice del local (K):	0.89
Número mínimo de puntos de cálculo:	4

Disposición de las luminarias

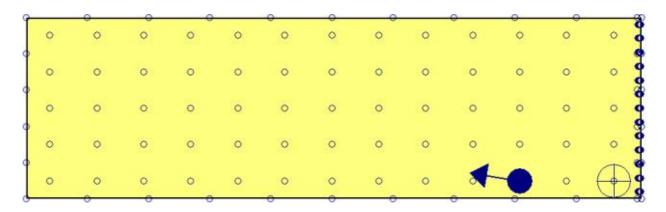
7.39 m

Tipo	Cantidad	Descripción	Flujo Iuminoso (Im)	Rendimiento (%)	Potencia total (W)
9		Luminaria de techo, de 597x597x85 mm, para 4 lámparas fluorescentes TL de 18 W, modelo OD-3441 4x18W AF TL "ODEL- LUX"	5400	69	3 x 92.0
					Total = 276.0 W

Valores de cálculo obtenidos	
Iluminancia mínima:	366.02 lux
Iluminancia media horizontal mantenida:	423.07 lux
Índice de deslumbramiento unificado (UGR):	14.00
Valor de eficiencia energética de la instalación (VEEI):	4.00 W/m ²
Factor de uniformidad:	86.51 %


REGISTRO Y ACREDITACION

DE DOCUMENTOS PROFESIONALES


179500/52957

Arquitectos de Murcia MMPG 23/12/2015

Valores calculados de iluminancia

Posición de los valores pésimos calculados

- Iluminancia mínima (366.02 lux)
- ← Índice de deslumbramiento unificado (UGR = 14.00) Puntos de cálculo (Número de puntos de cálculo: 172)

Murcia, octubre de 2015

Fdo. Ana Gonzalo Vivancos y Marta Serrano Martínez Arquitectas

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Ana Gonzalo Vivancos y Marta Serrano Martínez

C/ González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia

Tif: 61

1 El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado.

Número Fecha

1 1 5 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 61

1 1 Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez

23/12/2015

ANEXO 4: CALCULO JUSTIFICATIVO DE LA ESTRUCTURA

ANEXO 4: CALCULOS JUSTIFICATIVOS DE LA ESTRUCTURA

4.1 **DESCRIPCION GENERAL Y SOLUCION ESTRUCTURAL**

Las zonas de forjado bidireccional reticular se resuelven con losa de hormigón armado aligerada mediante elementos prefabricados, de canto total 30+5 cms., retícula de 85x85 cms. y anchura de nervios de 15 cms.

Las zonas de losa voladas, de canto 35 cms. que se resuelve con losa de hormigón armado aligerada mediante alvéolos conformados con piezas aligerantes de entrevigado de tubo de PVC, diámetro 25 cms.

El forjado sanitario de suelo de planta baja se ha resuelto con un forjado unidireccional de canto 25+5 cms. con viguetas prefabricadas autorresistentes de hormigón armado y piezas aligerantes de entrevigado. Las viguetas apoyarán sobre muretes levantados sobre las correas de cimentación, que habrán de estar en contacto con el terreno firme, para transmitir al mismo las cargas gravitatorias de este forjado sanitario.

Las zonas de estructura metálica se han resuelto con la utilización de perfiles laminados normalizados S-275-JR, tal como se indica en los planos correspondientes.

4.2 NORMATIVA CONSIDERADA

La estructura proyectada se ha calculado de acuerdo con las condiciones medias de carga de explotación y acciones externas, que se detallan a continuación:

- Código Técnico de la Edificación, Documento Básico de Seguridad Estructural - Acciones en la Edificación DB-SE-AE.
- Código Técnico de la Edificación, Documento Básico de Seguridad Estructural - Cimientos DB-SE-C.
- Código Técnico de la Edificación, Documento Básico de Seguridad Estructural - Acero DB-SE-A
- Código Técnico de la Edificación, Documento Básico de Seguridad Estructural - Fábrica DB-SE-F.
- Instrucción de Hormigón Estructural EHE-08
- Norma de Construcción Sismo Resistente NCSE-02

4.3 **ACCIONES CONSIDERADAS SEGÚN CTE-SE-AE**

4.3.1 Valor característico de las Acciones permanentes

Forjado bidireccional con piezas aligerantes canto (30+5)	6.00 kN/m ²
Losas macizas con tubos aligerantes canto (30)	6.20 kN/m ²

- 1		
- 1		
	Foriado unidireccional canto (25+5)	3.50 kN/m ²
- 1		J.30 KIN/III ² II

Cubierta s/forjado plana recrecido e impermeabilización	1.50 kN/m ²
Cubierta s/forjado plana catalana o invertida	2.50 kN/m ²
Fábrica ladrillo cerámico macizo	18.0 kN/m ³
Tabiquería	1.00 kN/m ²
Fábrica ladrillo cerámico perforado	15.0 kN/m³
Fábrica ladrillo cerámico hueco	12.0 kN/m³
Hormigón armado	25.0 kN/m³
Pavimentos	1.00 kN/m ²

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Número Fecha

Valor característico de las Acciones Variables 4.3.2

4.3.2.1 Sobrecargas de uso

CATEGORIA DE USO	CARGA UNIFORME	CARGA CONCENTRADA
Aularios	4.00 kN/m ²	4.00 kN/m ²
Zonas exteriores	4.00 kN/m ²	4.00 kN/m ²
Escaleras y accesos	+1.00 kN/m ²	
Azotea (sólo conservación) pte < 20°	1.00 kN/m ²	2.00 kN/m ²

Se han tenido en cuenta, zonas especificas con incremento de sobrecarga de 1.50 kN/m², en las zonas de cubierta destinadas a placas solares.

4.3.2.2 Acciones sobre barandillas y elementos divisorios

Para edificio situado en Categoría de Uso "C" (de acceso público) tomamos un valor de fuerza horizontal de 0.8 KN/m aplicado en la coronación del elemento.

4.3.2.3 **Viento**

Por estar situado el edificio en Zona B del Mapa de la Figura D.1. le corresponde una presión dinámica de 0.45 Kn/m² y tener un grado de Aspereza del Entorno del tipo IV (Tabla D.2), se adoptan los siguientes valores de parámetros característicos:

k = 0.22

L = 0.30 m.

Z = 5.00 m.

4324 Acciones térmicas

No se consideran, dado que no existen elementos estructurales continuos de longitud mayor de 40 metros. (Art.3.4.1)

4.3.2.5

De acuerdo con el CTE-SE-AE, Tabla E-2, en función de la altitud de su emplazamiento (75 m.s.n.m.) y para Zona Climática 6 (Figura E.2), se adopta el valor

Sobrecarga de nieve	0.20 kN/m ²

- 4.3.3 Valor característico de las Acciones Accidentales
- 4.3.3.1 Acciones Sísmicas (Según Norma NCSE-02)
- 4.3.3.1.1 PRESCRIPCIONES DE INDOLE GENERAL
- 4.3.3.1.1.1 Clasificación de la construcción (según artº 1.2.2 de la Norma):

De importancia normal

4.3.3.1.1.2 Aceleración sísmica básica y Coeficiente de contribución del emplazamiento

Al municipio de Alcantarilla le corresponde, según el Anejo 1 de la NCSE-02 un valor de la aceleración sísmica básica ab = 0.15 g. y un Coeficiente de contribución K= 1.

433113 Coeficiente de riesgo

En función del arto 2.2. de la norma, a la construcción proyectada le corresponde un periodo de vida de 50 años, y consecuentemente un coeficiente de riesgo ρ = 1.

4.3.3.1.1.4 Coeficiente de amplificación del terreno

Con los datos aportados en el Estudio geotécnico, y ponderando los estrate REGISTRO Y ACREDITACION 23/12/2015
DE DOCUMENTOS PROFESIONALES 179500/52957 Coeficiente del terreno (Tabla 2.1) 23/12/2015

Por tanto, y aplicando el artº 2.2. de La Norma, el coeficiente "S" de amplifica ción del Cotegito Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

S = 0.833

4.3.3.1.1.5 Aceleración sísmica de cálculo:

De acuerdo con el artº 2.2. de la norma, la aceleración sísmica de cálculo que le corresponde al edificio, en función de su emplazamiento y clasificación será

 $a_c = S.\rho.a_b = 0.833 \times 0.15 \times 1 = 0.125 g$

4.3.3.1.2 CARACTERISTICAS DE LA EDIFICACION

(No se proyectan pantallas rigidizadoras)

La estructura proyectada para el edificio será de hormigón armado y compartimentada.

- Coeficiente de comportamiento por ductilidad = 2 (ductilidad BAJA) μ =
- C = Coeficiente del terreno = 1.0 (Corresponde a terreno Tipo I, Tabla 2.1. de la Norma)
- Ω = Amortiguamiento = 5 %
- $\beta =$ Coeficiente de respuesta = 0.50 (Tabla 3.1)
- P = Peso correspondiente a las masas de la planta, definidas el el apartado 3.2. de la Norma.

(a estos efectos, la fracción a considerar de las sobrecargas es de 0.6)

 $\alpha(T) =$ Ordenada espectral de cálculo = $\alpha(T_0)$ = en función del periodo fundamental de oscilación y el coeficiente de suelo C.

CALCULOS SISMICOS 4 3 3 1 3

El procedimiento de cálculo sísmico se efectúa por análisis modal espectral, con tres grados de libertad por planta, dos desplazamientos y un giro, según el artº 3.6.2. de la NCSE-02.

Los valores obtenidos corresponden a los valores de las fuerzas sísmicas actuantes en cada planta. El cortante de planta a considerar, correspondiente a una planta dada, es el sumatorio de las fuerzas sísmicas de todas las plantas situadas sobre ella, incluida la de la planta considerada. El sumatorio de todas las plantas constituirá el cortante total del edificio.

Para la distribución en los soportes de los esfuerzos horizontales se emplea el método de Bowman, repartiendo el cortante que actúa en cada planta proporcionalmente al momento de inercia de cada soporte en la dirección estudiada.

Se prefiere incrementar la armadura de los soportes sin recurrir a aumentar la sección de hormigón, para no incrementar las rigideces de los elementos, y conseguir que la estructura sea lo más dúctil posible.

Se toma la precaución adicional de concentrar los estribos de los soportes en las proximidades de los nudos, según detalle gráfico, al objeto de mejorar la respuesta a esfuerzos cortantes, en los puntos más delicados de la estructura.

De acuerdo con la NCSE-02 apartado 3.4 "Verificación de la Seguridad", y puesto que en el cálculo de los elementos de hormigón se utilizan métodos de estados límite de rotura, el coeficiente de mayoración tomado para las acciones sísmicas es la unidad, manteniendo los coeficientes de minoración de los materiales utilizados.

JUNTAS ENTRE CONSTRUCCIONES 43314

De acuerdo con el Arto 4.2.5 de la Norma, la anchura mínima de las juntas debe ser mayor de 3 cms, y no menor de la suma de los desplazamientos laterales máximos "u" de los dos edificios contiguos.

Como en este caso se ha calculado el desplazamiento modal a la cota más alta de contacto entre edificaciones, que tiene un valor de 0.3 cms, el desplazamiento horizontal con lo que el desplazamiento máximo previsto, calculado según el art. 3.7.3.3. de la Norma será de:

 $u = u_e \mu = 0.3 x 2 = 0.6 centimetros.$

La separación mínima cálculada entre edificios de 1.2 cms. (el doble del desplazamiento calculado para cada edificio), es inferior a la mínima exigida por la norma.

Por lo que la separación mínima de juntas sera de 3 cms.

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

Arquitectas: Ana Gonzalo Vivancos y Marta Serrano Martínez C/González Adalid, 11, 1º izda., puerta 1 - 30001 Murcia 🗆 Tlf: 61

El Colegio Acredita la firma digital de los autores Número Fecha 659 081 538

4.3.4 Combinación de hipótesis

Se consideran las siguientes hipótesis de cálculo:

Hipótesis I

Estructura sometida a la totalidad de las cargas permanentes y sobrecargas gravitatorias.

Hipótesis II y III

Estructura sometida a la totalidad de las cargas permanentes y alternando las sobrecargas gravitatorias, considerándolas alternativamente actuando sobre los vanos pares e impares de una cuadrícula ideal formada por las alineaciones de soportes

Hipótesis IV y V

Estructura sometida a las cargas permanentes más sobrecargas, con su valor característico y acción sísmica simultánea. En esta hipótesis no se incluye, de acuerdo con el Artº 3.3 de la Norma, la acción simultánea del viento, salvo que sea situación expuesta. (acciones horizontales con signo positivo y negativo)

Hipótesis VI y VII

Estructura sometida a las cargas permanentes, más sobrecargas afectadas por un coeficiente reductor de 0.7 y acción simultánea del esfuerzo de viento con coeficiente 0.9. (acciones horizontales con signo positivo y negativo)

Una vez establecidas las diversas hipótesis de cargas, se calcula cada una de ellas, y se establece una envolvente con los resultados más desfavorables de cada caso, envolvente que nos servirá de base para determinar las capacidades mecánicas necesarias en cada punto.

4.4 MATERIALES Y COEFICIENTES

Las Clases Generales de Exposición definidas en la Tabla 8.2.2. de la Instrucción EHE, son de aplicación a la edificación proyectada en las siguientes tipificaciones de ambientes:

- Cimentación Designación IIa

- Sanitario Designación IIa

- Estructura sobre rasante Designación I

Se considera que la estructura tendrá un nivel de control de su ejecución "a nivel normal" según la EHE-08, por lo que se adoptan los siguientes parámetros:

Hormigón HA-25	f _{ck} = 25 N/mm ²
Acero B-500-S	$f_s = 500 \text{ N/mm}^2$
Coeficiente minoración hormigón	$\gamma_c = 1.50$
Coeficiente minoración acero	$\gamma_s = 1.15$
Coeficiente mayoración acciones	
Acciones permanentes	$\gamma_f = 1.35$
Acciones variables	$\gamma_f = 1.50$

En cuanto a tipificación de los hormigones a utilizar, serán los siguientes:

Cimentación HA-25-P-20-lla

- Sanitario HA-25-B-20-lla

- Estructura sobre rasante HA-25-B-20-I

Para la confección de estos hormigones se considera como más adecuado el cemento tipo CEM-I-42.5, excepto si se efectúa el hormigonado en tiempo caluroso, recomendando entonces el empleo de cemento CEM-II-AL-42.5

4.5 CRITERIOS DE DURABILIDAD

En base a los dispuesto en el Artículo 37 de la EHE-08, deberán adoptarse las especificaciones que a continuación se indican:

ELEMENTO	TIPO DE AMBIENTE	RECUBRIMIENTO NOMINAL (INCLUSO ESTRIBOS)	RELACION MAXIMA AGUA/CEMENTO	CONTENIDO MINIMO DE CEMENTO Kg/m³		
CIMENTACION y SANITARIO	lla	(20+10)=30 mm	400 100 100	Y ACREDITACION	23/12/2015 179500/52957	
RESTO DE ESTRUCTURA	1	(15+10)=25 mm	0.65 Colegio Ofic	cal de Arquitectos de		
				ANA LUISA DE GONZALO VIVANCOS		

4.6 PROCEDIMIENTO DE CALCULO

El cálculo se realiza con el auxilio de ordenadores compatibles en red, mediante la utilización del programa CAD2000, de la Empresa Promonal.

Se analizan estructuras espaciales formadas por barras de sección constante y apoyos rígidos, sometidos a esfuerzos y momentos. En cada barra se consideran las deformaciones producidas por esfuerzos flectores, torsores y axiles.

El análisis para la obtención de las solicitaciones se realiza mediante un método matricial, planteando el equilibrio de fuerzas, formando la matriz de rigidez de toda la estructura y resolviendo el sistema de ecuaciones resultante mediante un sistema iterativo.

Como luz o altura para el cálculo de las rigideces de los elementos se toman las distancias entre ejes. Asimismo, se supone que las secciones planas se mantienen planas una vez deformadas.

Las combinaciones de acciones para los Estados Limites Últimos se realizan siguiendo el Art. 13.2 de la Instrucción EHE-08. Las combinaciones dependen del tipo de acciones que intervengan.

Una vez calculadas las deformaciones de cada una de las hipótesis, se obtiene los esfuerzos para cada elemento constructivo en función de su propia matriz de rigidez. Asimismo se calculan los esfuerzos intermedios para su posterior armado y cálculo de flecha.

El armado de cada sección se dimensiona para los esfuerzos más desfavorables mediante los métodos indicados en los Anejos 7 y 8 de la Instrucción EHE-08.

Se han considerado los forjados como indeformables en su plano, por lo que cada nudo estructural tendrá tres grados de libertad, dos desplazamientos y un giro. No se han tenido en cuenta esfuerzos de segundo orden.

Los pilares se han calculado a flexocompresión, y comprobados a pandeo en función de su altura, siendo aptos para soportar los esfuerzos axiles y los momentos que se producen.

Perimetralmente a fachadas y huecos se calculan zunchos de borde suficientes para absorber los esfuerzos de flexión y torsión que se han de producir en la estructura.

En la unión entre forjados y soportes, para colaborar a absorber, en su sección crítica, los esfuerzos cortantes de punzonamiento, se disponen armaduras suplementarias, suficientes para este fin.

Las celosías metálicas se han calculado por ordenador con el programa "Metal 3D", qde la Empresa CYPE, que analiza cada celosía por resolución analítica del método matricial, obteniendo para cada barra los esfuerzos de tracción o compresión, dimensionándolas en función del correspondiente coeficiente de pandeo.

4.7 CIMENTACIÓN

A la vista de los datos aportados sobre las características geotécnicas del terreno, y de los esfuerzos que transmiten al terreno los soportes, se adopta una solución de cimentación directa por zapatas aisladas, calculadas para una tensión admisible del terreno de σ_{adm}.=2.0 Kp/cm².

El dimensionado previsto es suficiente para absorber los esfuerzos de punzonamiento de cada soporte, considerando la sección de referencia crítica tal como se define en el Artº 46 de la Instrucción EHE.

El cálculo se realiza con objeto de minimizar al máximo los asientos, mediante zapatas aisladas con arriostramiento en ambos sentidos, armando las zapatas para la solicitación mas desfavorable.

Se estima, dado el poco porcentaje de la sobrecarga de uso respecto a la carga total de cálculo, que los asientos totales previstos ocurrirán casi en su totalidad durante la fase de construcción del edificio.

En el caso de hipótesis sísmicas se comprueba la cimentación cos similares criterios, adoptando un valor de la tensión admisible 1.5 veces la tensión admisible adoptada para criterios gravitatorios.

Murcia, octubre de 2015

Fdo. Ana Gonzalo Vivancos y Marta Serrar Martínez Arquitecta

REGISTRO Y ACREDITACION DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores Número El presente documento ha sido registrado y acreditado. Fecha

23/12/2015

ANEXO 5

PLAZO DE EJECUCION PREVISTO Y CRONOGRAMA

FORMULA POLINOMICA DE REVISION DE PRECIOS

PROPUESTA DE CLASIFICACION DEL CONTRATISTA

DECLARACION DE QUE LA OBRA PROYECTADA CONSTITUYE UNA OBRA COMPLETA, SUSCEPTIBLE DE SER ENTREGADA AL USO ESPECIFICO DE ACUERDO CON EL ART. 125 RGLCAP

PROYECTO BASICO Y DE EJECUCION DE OBRAS DE AMPLIACIÓN Y REFORMA EN EL I.E.S. SANJE **ALCANTARILLA (MURCIA)**

PROMUEVE: CONSEJERÍA DE EDUCACIÓN Y UNIVERSIDADES ARQUITECTAS: ANA GONZALO VIVANCOS Y MARTA SERRANO MARTINEZ

> Representantes de SERRANO & GONZALO ARQUITECTAS S.L.P. CIF: B73557191. C/González Adalid 11, 1º pta. 2. 30001 Mu

23/12/2015

Colegio Oficial de Arquitectos de Murcia ^{MMPG}

Autores: MARTA SERRANO MARTINEZ ANA LUISA DE GONZALO VIVANCOS

El Colegio Acredita la firma digital de los autores El presente documento ha sido registrado y acreditado. Número Fecha

PROYECTO: BÁSICO Y DE EJECUCIÓN DE OBRAS DE AMPLIACIÓN Y REFORMA EN EL I.E.S. SANJE

EMPLAZAMIENTO: ALCANTARILLA (MURCIA)

CONSEJERÍA DE EDUCACIÓN Y UNIVERSIDADES PROMOTOR:

ANA GONZALO VIVANCOS Y MARTA SERRANO MARTINEZ **ARQUITECTO:**

REVISIÓN DE PRECIOS

De acuerdo con lo dispuesto en el Real Decreto 1359/2011, de 7 de octubre, por el que se aprueba la relación de materiales básicos y las fórmulas-tipo generales de revisión de precios de los contratos de obras y de contratos de suministro de fabricación de armamento y equipamiento de las Administraciones Públicas, y de acuerdo a la relación de fórmulas de revisión de precios de los contratos de obras y de los contratos de suministro de fabricación de armamento y equipamiento, que aparece en el Anexo II del mismo, la fórmula a aplicar es la 811 correspondiente a obras de edificación en general:

FÓRMULA 811. Obras de edificación general

Kt = 0,04At /A0 + 0,01Bt /B0 + 0,08Ct /C0 + 0,01Et /E0 + 0,02Ft /F0 + 0,03Lt /L0 + 0,08Mt /M0 + 0,04Pt /P0 + 0,01Qt /Q0 + 0,06Rt /R0 + 0,15St /S0 + 0,02Tt /T0 + 0,02Ut /U0 + 0,01Vt /V0 + 0,42

Es también de aplicación el texto refundido de la Ley de Contratos del Sector Público aprobado por Real Decreto Legislativo 3/2011, de 14 de noviembre, que dice lo siguiente:

CAPÍTULO II

Revisión de precios en los contratos de las Administraciones Públicas

Artículo 89. Procedencia y límites.

1. La revisión de precios en los contratos de las Administraciones Públicas tendrá lugar, en los términos establecidos en este Capítulo y salvo que la improcedencia de la revisión se hubiese previsto expresamente en los pliegos o pactado en el contrato, cuando éste se hubiese ejecutado, al menos, en el 20 por 100 de su importe y hubiese transcurrido un año desde su formalización. En consecuencia, el primer 20 por 100 ejecutado y el primer año transcurrido desde la formalización quedarán excluidos de la revisión.

No obstante, en los contratos de gestión de servicios públicos, la revisión de precios podrá tener lugar una vez transcurrido el primer año desde la formalización del contrato, sin que sea necesario haber ejecutado el 20 por 100 de la prestación.

- 2. La revisión de precios no tendrá lugar en los contratos cuyo pago se concierte mediante el sistema de arrendamiento financiero o de arrendamiento con opción a compra, ni en los contratos menores. En los restantes contratos, el órgano de contratación, en resolución motivada, podrá excluir la procedencia de la revisión de precios.
- 3. El pliego de cláusulas administrativas particulares o el contrato deberán detallar, en su caso, la fórmula o sistema de revisión aplicable.

Artículo 90. Sistema de revisión de precios.

- 1. Cuando resulte procedente, la revisión de precios se llevará a cabo mediante la aplicación de índices oficiales o de la fórmula aprobada por el Consejo de Ministros, previo informe de la Junta Consultiva de Contratación Administrativa del Estado, para cada tipo de contratos.
- 2. El órgano de contratación determinará el índice que deba aplicarse, atendiendo a la naturaleza de cada contrato y la estructura de los costes de las prestaciones del mismo. Las fórmulas aprobadas por el Consejo de Ministros excluirán la posibilidad de utilizar otros índices; si, debido a la configuración del contrato, pudiese ser aplicable más de una fórmula, el órgano de contratación determinará la más adecuada, de acuerdo con los criterios indicados.
- 3. Cuando el índice de referencia que se adopte sea el Índice de Precios de Consumo elaborado por el Instituto Nacional de Estadística o cualquiera de los índices de los grupos, subgrupos, clases o subclases que en él se integran, la revisión no podrá superar el 85 por 100 de variación experimentada por el índice adoptado.

Artículo 91. Fórmulas.

1. Las fórmulas que se establezcan reflejarán la ponderación en el precio del contrato del coste de los materiales básicos y de la energía incorporados al proceso de generación de las prestaciones objeto del mismo. No se incluirán en ellas el coste de la mano de obra, los costes financieros, los gastos generales o de estructura ni el beneficio industrial.

23/12/2015

Colegio Oficial de Arquitectos de Murcia MMPG

Proyecto básico y de ejecución de Obras de ampliación y reforma en el I.E.S. Sanje de Alcantarilla. Promotor: CONSEJERIA DE EDUCACION Y UNIVERSIDADES

2. Cuando por circunstancias excepcionales la evolución de los costes de mano de obra o financieros acaecida en un período experimente desviaciones al alza que puedan reputarse como impredecibles en el momento de la adjudicación del contrato, el Consejo

Art. 220. Suspensión de los contratos.

- 1. Si la Administración acordase la suspensión del contrato o aquélla tuviere lugar por la aplicación de lo dispuesto en el artículo 216, se levantará un acta en la que se consignarán las circunstancias que la han motivado y la situación de hecho en la ejecución de aquél.
- 2. Acordada la suspensión, la Administración abonará al contratista los daños y perjuicios efectivamente sufridos por éste.

Murcia, octubre de 2015

Fdo.: Ana Gonzalo Vivancos y Marta Serrano Martínez Arquitectas

Autores: Marta Serrano Martinez Ana Luisa de Gonzalo Vivancos

PROYECTO: BÁSICO Y DE EJECUCIÓN DE OBRAS DE AMPLIACIÓN Y REFORMA EN EL I.E.S. SANJE

EMPLAZAMIENTO: ALCANTARILLA (MURCIA)

CONSEJERÍA DE EDUCACIÓN Y UNIVERSIDADES PROMOTOR:

ANA GONZALO VIVANCOS Y MARTA SERRANO MARTINEZ ARQUITECTO:

CLASIFICACIÓN DEL CONTRATISTA

La clasificación y la categoría de clasificación en los contratos de obras de la empresa adjudicataria del contrato de obras correspondiente a este proyecto se determina de acuerdo a las disposiciones indicadas en el RGLCAP.

De acuerdo con el artículo 25 del RGLCAP, en el que se establecen los grupos (y subgrupos en su caso), la empresa contratista adjudicataria deberá estar clasificada en el grupo C "Edificaciones" descrito dentro de este artículo.

De acuerdo con el artículo 26 del RGLCAP, en el que se establecen las categorías de los contratos de obras, determinadas por su anualidad media, la categoría con la que deberá contar la empresa adjudicataría del proyecto será la siguiente:

Calculo de la anualidad media:

PEC+IVA = 2.000.000,00 €

Calculo de anualidad media: PEC+IVAx12/Plazo de ejecución en meses = 2.000.000 x 12 / 12 = 2.000.000,00 €

Clasificación del contrato de obras:

Categoría E (840.000 € < anualidad media < 2.400.00 €)

Murcia, octubre de 2015

Fdo.: Ana Gonzalo Vivancos y Marta Serrano Martínez Arquitectas

REGISTRO Y ACREDITACION 23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957 Colegio Oficial de Arquitectos de Murcia MMPG

PROYECTO: BÁSICO Y DE EJECUCIÓN DE OBRAS DE AMPLIACIÓN Y REFORMA EN EL I.E.S. SANJE

EMPLAZAMIENTO: ALCANTARILLA (MURCIA)

PROMOTOR: CONSEJERÍA DE EDUCACIÓN Y UNIVERSIDADES

ANA GONZALO VIVANCOS Y MARTA SERRANO MARTINEZ ARQUITECTO:

MANIFESTACIÓN DE OBRA COMPLETA

El proyecto comprende una obra completa susceptible de entrega al uso, de acuerdo con el artículo 125 y el artículo 127.2 del RGLCAP (Reglamento General de la Ley de Contratos de las Administraciones Públicas)

Artículo 125. Proyectos de obras.

- 1. Los proyectos deberán referirse necesariamente a obras completas, entendiéndose por tales las susceptibles de ser entregadas al uso general o al servicio correspondiente, sin perjuicio de las ulteriores ampliaciones de que posteriormente puedan ser objeto y comprenderán todos y cada uno de los elementos que sean precisos para la utilización de la obra.
- 2. Podrán considerarse elementos comprendidos en los proyectos de obras aquellos bienes de equipo que deben ser empleados en las mismas mediante instalaciones fijas siempre que constituyan complemento natural de la obra y su valor suponga un reducido porcentaje en relación con el presupuesto total del proyecto.
- 3. Cuando se trata de obras que por su naturaleza o complejidad necesiten de la elaboración de dos o más proyectos específicos y complementarios, la parte de obra a que se refiera cada uno de ellos será susceptible de contratación independiente, siempre que el conjunto de los contratos figure un plan de contratación plurianual.
- 4. Los proyectos relativos a obras de reforma, reparación o conservación y mantenimiento deberán comprender todas las necesarias para lograr el fin propuesto.

Artículo 127. Contenido de la memoria.

2. Igualmente, en dicha memoria figurará la manifestación expresa y justificada de que el proyecto comprende una obra completa o fraccionada, según el caso, en el sentido permitido o exigido respectivamente por los artículos 68.3 de la Ley y 125 de este Reglamento. De estar comprendido el proyecto en un anteproyecto aprobado, se hará constar esta circunstancia.

Murcia, octubre de 2015

Fdo.: Ana Gonzalo Vivancos y Marta Serrano Martínez Arquitectas

23/12/2015

OFICIAL DE **ARQUITECTOS** DE MURCIA ara carrillo, 5 CP 30004 www.coamu.es 968 213 268 968 220 983

coamu@coamu.es

COLEGIO INFORME ANEXO AL EXPEDIENTE COLEGIAL Nº 179500 fecha 23/12/2015

En cumplimiento de lo establecido en el Artículo 13.2 de la Ley 25/2009 que modifica la Ley de Colegios Profesionales 2/1974, y de lo previsto en el Real Decreto 1000/2010, de 5 de agosto, sobre visado colegial, la Oficina de Visado del Colegio Oficial de Arquitectos de Murcia ha procedido, en el ámbito de su competencia, a la revisión del siguiente

1. TRABAJO PROFESIONAL OBJETO

DENOMINACIÓN: BÁSICO Y EJECUCIÓN DE AMPLIACIÓN Y REFORMA EN EL I.E.S. SANJE DE ALCANTARILLA
EMPLAZAMIENTO: FERNANDO III EL SANTO, Km 1,5
PROMOTOR: CONSEJERIA EDUCACION Y UNIVERSIDADES, NIF
DOMICILIO: AV. DE LA FAMA, 15 MURCIA, 30006, Murcia
Representante legal:
ARQUITECTO/S AUTOR/ES DEL TRABAJO PROFESIONAL:
MARTA SERRANO MARTÍNEZ , NIF:34806238Q y ANA LUISA DE GONZALO VIVANCOS, NIF: 34787515S
DOMICILIO PROFESIONAL: C/ GONZÁLEZ ADALID, 11 - 1º IZQ. 30001, MURCIA
SOCIEDAD PROFESIONAL: SERRANO Y GONZALEZ ARQUITECTAS, S.L.P CIF: B73557191

2. SE HAN COMPROBADO COMPROBADO LOS SIGUIENTES EXTREMOS:

a) La identidad y la habilitación profesional del autor del trabajo, utilizando para ello los registros de colegiados previstos en el Articulo 10 punto 2 de la Ley 25/2009

3. OBSERVACIONES PARTICULARES

A petición expresa de los arquitectos redactores, y por estar el expediente supervisado por la Administración Pública, se procede al REGISTRO Y ACREDITACIÓN de la documentación presenteada. Como consecuencia, no se han comprabado aquellos aspectos sometidos al VISADO colegial, ni se ha procedido por parte de la oficina técnica del Colegio Ofical de Arquitectos de Murcia al control de la documentación gráfica y escrita presentada que en el caso de VISADO sí hubiera sido efectuada.

Por tanto, el sellado de los documentos se efectúa única y expresamente para acreditar la autoría de los redactores y dejar constancia en los archivos colegiales de la misma.

			_

5. CONCLUSION

Visto todo lo anterior se informa que:

El trabajo profesional indicado en el apartado 1, cumple con los extremos del apartado 2, los cuales se encuentran cumplimentados de acuerdo con el procedimiento de control propio del Departamento de Visado del Colegio Oficial de Arquitectos de Murcia, habiendo merecido el presente informe con las observaciones anexas y expresadas

23/12/2015 DE DOCUMENTOS PROFESIONALES 179500/52957

Colegio Oficial de Arquitectos de Murcia MMPG

