

Development of a sampling and analysis method using SPE and GC-MS for the determination of unmetabolized styrene in urine

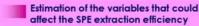
- C. Prado (1); P. Marín (1); P. Simon (2); J.F. Periago (1)
- (1) Instituto de Seguridad y Salud Laboral de la Región de Murcia
- (2) Institut National de Recherche et de Sécurité, Vandoeuvre, France

Introduction

Biological monitoring of unmetabolized styrene in urine provides a useful method for determination of the individual's uptake of styrene [1]

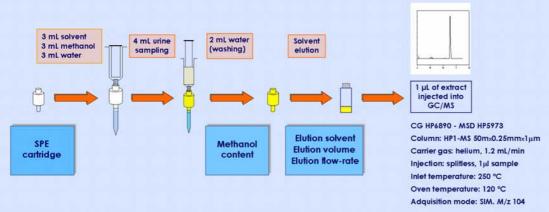
In field studies, urine is generally sampled in glass or plastics containers, refrigerated, and delivered to the laboratory where samples are transferred to vials for analysis

Drawbacks


- > Difficulty for collection, transport and storage of samples
- > Losses of the volatile analytes of interest
- > Analysis must be carried out as soon as possible

A new sampling system is being developed to overcome the drawbacks [2]

The system combines sampling, transportation and preservation of biological fluids. It consists on a special syringe joined to an SPE cartridge by means an adapter

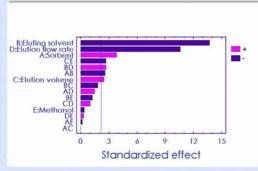

Objectives

Development of a sampling and analysis method for the determination of styrene in urine

Experimental

Experimental design

Half fraction screening design Experimental factors: 5 Number of runs: 32 Replicated design: 1 Randomized: Yes Response: Recovery (%)


Factors	low	High	
Sorbent	C18	OASIS	
Eluting Solvent	EA	DCM	
Elution volume (ml)	1.0	4.0	
Elution flow rate (ml/min)	0.5	4.0	
Methanol fraction (%)	0	5	

Results and conclusions

Fractional factorial design matrix and results of screening experiment

of screening experiment								
Sorbent	Buting solvent	Elution vol (ml)	Elution flow (mL/min)	Methanol (%)	Recovery (%)			
OASIS	DCM	1	0.5	5	54.3	58.2		
C18	DCM	1	0.5	0	59.5	50.5		
OASIS	DCM	1	4.0	0	33.3	45.6		
OASIS	EA	4	0.5	5	90.0	97.8		
C18	EA	4	0.5	0	93.2	83.3		
C18	EA	1	0.5	5	82.8	83.6		
OASIS	EA	4	4.0	0	74.8	77.7		
OASIS	DCM	4	0.5	0	54.8	64.3		
C18	EA	1	4.0	0	43.2	46.3		
C18	DCM	4	4.0	0	40.9	43.8		
OASIS	EA	1	0.5	0	89.8	83.3		
C18	DCM	1	4.0	5	41.9	31.8		

Standardized Pareto Chart for Recovery

Repeatability

Mean

RSD%

Spiked urine samples: 174.7µg/L Eluent: 1.5 mL of ethyl acetate Flow-rate: 0.5 mL/min μg/L extracted Recovery urinary styrene 145.0 83.0 145.2 83.1 154.7 88.5 145.6 83.4 173.9 99.5

87.5

8.1

152.9

Conclusions

- The eluting solvent and the elution flow-rate are the more significant factors affecting the styrene extraction from urine
- The use of ethyl acetate and the OASIS sorbent improves the efficiency of styrene extraction
- The increase of the elution flow-rate has a negative influence on the response
- The presence of methanol in washing solvent has no effect on the styrene recovery
- The increase in the elution volume has a minor positive effect, however low elution volumes allows the enrichment of the styrene concentration in the eluate
- The obtained results indicate that this methodology could be satisfactorily used for biomonitoring of styrene in urine

^[1] Ibarra, I.; PhD Thesis. Universidad de Murcia. 2002.